Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Chem Biol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773330

RESUMO

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.

2.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37561584

RESUMO

Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit. We found that, in human cells, genetic removal of QR2 produced a shift in the proteome opposing that found in AD brains while simultaneously reducing oxidative stress. We therefore created highly specific QR2 inhibitors (QR2is) to enable evaluation of chronic QR2 inhibition as a means to reduce biological age-related metabolic stress and cognitive decline. QR2is replicated results obtained by genetic removal of QR2, while local QR2i microinjection improved hippocampal and cortical-dependent learning in rats and mice. Continuous consumption of QR2is in drinking water improved cognition and reduced pathology in the brains of AD-model mice (5xFAD), with a noticeable between-sex effect on treatment duration. These results demonstrate the importance of QR2 activity and pathway function in the healthy and neurodegenerative brain and what we believe to be the great therapeutic potential of QR2is as first-in-class drugs.


Assuntos
Doença de Alzheimer , Quinona Redutases , Animais , Humanos , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Hipocampo/metabolismo , Estresse Oxidativo , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/genética , Quinona Redutases/metabolismo , Estresse Fisiológico
3.
Mol Cancer Ther ; 21(9): 1462-1472, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793468

RESUMO

Extra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC). EDB+FN is broadly expressed in the stroma of pancreatic, non-small cell lung (NSCLC), breast, ovarian, head and neck cancers, whereas restricted in normal tissues. In patient-derived xenograft (PDX), cell-line xenograft (CLX), and mouse syngeneic tumor models, EDB-ADC, conjugated to auristatin Aur0101 through site-specific technology, demonstrated potent antitumor growth inhibition. Increased phospho-histone H3, a pharmacodynamic biomarker of response, was observed in tumor cells distal to the target site of tumor ECM after EDB-ADC treatment. EDB-ADC potentiated infiltration of immune cells, including CD3+ T lymphocytes into the tumor, providing rationale for the combination of EDB-ADC with immune checkpoint therapy. EDB-ADC and anti-PD-L1 combination in a syngeneic breast tumor model led to enhanced antitumor activity with sustained tumor regressions. In nonclinical safety studies in nonhuman primates, EDB-ADC had a well-tolerated safety profile without signs of either on-target toxicity or the off-target effects typically observed with ADCs that are conjugated through conventional conjugation methods. These data highlight the potential for EDB-ADC to specifically target the tumor microenvironment, provide robust therapeutic benefits against multiple tumor types, and enhance activity antitumor in combination with checkpoint blockade.


Assuntos
Neoplasias da Mama , Imunoconjugados , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fibronectinas/metabolismo , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
ACS Med Chem Lett ; 11(6): 1175-1184, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32550998

RESUMO

Two novel compounds were identified as Naa50 binders/inhibitors using DNA-encoded technology screening. Biophysical and biochemical data as well as cocrystal structures were obtained for both compounds (3a and 4a) to understand their mechanism of action. These data were also used to rationalize the binding affinity differences observed between the two compounds and a MLGP peptide-containing substrate. Cellular target engagement experiments further confirm the Naa50 binding of 4a and demonstrate its selectivity toward related enzymes (Naa10 and Naa60). Additional analogs of inhibitor 4a were also evaluated to study the binding mode observed in the cocrystal structures.

5.
Methods Mol Biol ; 2078: 341-351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31643069

RESUMO

A critical component of antibody-drug conjugate (ADC) development is identification or verification of the active released entity upon cellular uptake and exposure to lysosomal enzymes. Coupled with LC/MS, commercial human lysosomal preparations can be used as an in vitro tool to explore the release characteristics of new ADCs, and gain information on potential metabolic or chemical liabilities of new payload structures. A general method for approaching this is described for cathepsin B-cleavable as well as non-cleavable ADCs, and opportunities for tailoring the method to specific cases are indicated.


Assuntos
Cromatografia Líquida , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Lisossomos/metabolismo , Espectrometria de Massas , Cromatografia Líquida/métodos , Humanos , Concentração de Íons de Hidrogênio , Imunoconjugados/química , Espectrometria de Massas/métodos
6.
ACS Med Chem Lett ; 10(8): 1104-1109, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413793

RESUMO

Many pharmaceutical companies have invested millions of dollars in establishing internal chemical stores to provide reliable access to large numbers of building blocks (BB) for the synthesis of new molecules, especially for the timely design and execution of parallel (library) synthesis. Recognizing budget and logistical limitations, we required a more economically scalable process to provide diverse BB. We disclose a novel business partnership that achieves the goals of just-in-time, economical access to commercial BB that increases chemical space coverage and accelerates the synthesis of new drug candidates. We believe that this model can be of benefit to companies of all sizes that are engaged in drug discovery by reducing cost, increasing diversity of analog molecules in a time-conscious manner, and reducing BB inventory. More efficient use of BB by customers may allow commercial vendors to devote a greater portion of their resources to preparing novel BB that increase chemical diversity as opposed to resynthesizing out-of-stock compounds that are inaccessible within company compound collections.

7.
Cell Chem Biol ; 26(1): 98-108.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30449673

RESUMO

The c-Jun NH2-terminal kinase (JNK) signaling pathway is central to the cell response to stress, inflammatory signals, and toxins. While selective inhibitors are known for JNKs and for various upstream MAP3Ks, no selective inhibitor is reported for MKK7--one of two direct MAP2Ks that activate JNK. Here, using covalent virtual screening, we identify selective MKK7 covalent inhibitors. We optimized these compounds to low-micromolar inhibitors of JNK phosphorylation in cells. The crystal structure of a lead compound bound to MKK7 demonstrated that the binding mode was correctly predicted by docking. We asserted the selectivity of our inhibitors on a proteomic level and against a panel of 76 kinases, and validated an on-target effect using knockout cell lines. Lastly, we show that the inhibitors block activation of primary mouse B cells by lipopolysaccharide. These MKK7 tool compounds will enable better investigation of JNK signaling and may serve as starting points for therapeutics.


Assuntos
MAP Quinase Quinase 7/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Células 3T3 , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , MAP Quinase Quinase 7/genética , MAP Quinase Quinase 7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteínas Quinases/química
9.
ACS Chem Neurosci ; 8(9): 1995-2004, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28609096

RESUMO

To enable the clinical development of our CNS casein kinase 1 delta/epsilon (CK1δ/ε) inhibitor project, we investigated the possibility of developing a CNS positron emission tomography (PET) radioligand. For this effort, we focused our design and synthesis efforts on the initial CK1δ/ε inhibitor HTS hits with the goal of identifying a compound that would fulfill a set of recommended PET ligand criteria. We identified [3H]PF-5236216 (9) as a tool ligand that meets most of the key CNS PET attributes including high CNS MPO PET desirability score and kinase selectivity, CNS penetration, and low nonspecific binding. We further used [3H]-9 to determine the binding affinity for PF-670462, a literature CK1δ/ε inhibitor tool compound. Lastly, [3H]-9 was used to measure in vivo target occupancy (TO) of PF-670462 in mouse and correlated TO with CK1δ/ε in vivo pharmacology (circadian rhythm modulation).


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Caseína Quinase I/antagonistas & inibidores , Lactamas , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Células COS , Caseína Quinase I/metabolismo , Chlorocebus aethiops , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Desenho de Fármacos , Humanos , Lactamas/síntese química , Lactamas/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Aleatória
10.
Bioorg Med Chem Lett ; 27(15): 3353-3358, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28610977

RESUMO

Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125µg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9µM and a favorable profile in the anesthetized guinea pig model.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Quinolinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , DNA Topoisomerase IV/metabolismo , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Cobaias , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
11.
PLoS One ; 12(5): e0178452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28558059

RESUMO

Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.


Assuntos
Antineoplásicos/química , Imunoconjugados/química , Peptídeos/química , Piranos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Piranos/química
12.
ACS Med Chem Lett ; 7(11): 977-982, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27882194

RESUMO

As part of our efforts to develop new classes of tubulin inhibitor payloads for antibody-drug conjugate (ADC) programs, we developed a tubulysin ADC that demonstrated excellent in vitro activity but suffered from rapid metabolism of a critical acetate ester. A two-pronged strategy was employed to address this metabolism. First, the hydrolytically labile ester was replaced by a carbamate functional group resulting in a more stable ADC that retained potency in cellular assays. Second, site-specific conjugation was employed in order to design ADCs with reduced metabolic liabilities. Using the later approach, we were able to identify a conjugate at the 334C position of the heavy chain that resulted in an ADC with considerably reduced metabolism and improved efficacy. The examples discussed herein provide one of the clearest demonstrations to-date that site of conjugation can play a critical role in addressing metabolic and PK liabilities of an ADC. Moreover, a clear correlation was identified between the hydrophobicity of an ADC and its susceptibility to metabolic enzymes. Importantly, this study demonstrates that traditional medicinal chemistry strategies can be effectively applied to ADC programs.

13.
ACS Med Chem Lett ; 7(11): 999-1004, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27882198

RESUMO

The tubulysin class of natural products has attracted much attention from the medicinal chemistry community due to its potent cytotoxicity against a wide range of human cancer cell lines, including significant activity in multidrug-resistant carcinoma models. As a result of their potency, the tubulysins have become an important tool for use in targeted therapy, being widely pursued as payloads in the development of novel small molecule drug conjugates (SMDCs) and antibody-drug conjugates (ADCs). A structure-based and parallel medicinal chemistry approach was applied to the synthesis of novel tubulysin analogues. These efforts led to the discovery of a number of novel and potent cytotoxic tubulysin analogues, providing a framework for our simultaneous report, which highlights the discovery of tubulysin-based ADCs, including use of site-specific conjugation to address in vivo stability of the C-11 acetate functionality.

14.
Bioconjug Chem ; 27(8): 1880-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27412791

RESUMO

There is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells. A series of thailanstatin-antibody conjugates were prepared in order to evaluate their potential utility in the treatment of cancer. After exploring a variety of linkers, we found that the most potent antibody-drug conjugates (ADCs) were derived from direct conjugation of the carboxylic acid-containing payload to surface lysines of the antibody (a "linker-less" conjugate). Activity of these lysine conjugates was correlated to drug-loading, a feature not typically observed for other payload classes. The thailanstatin-conjugates were potent in high target expressing cells, including multidrug-resistant lines, and inactive in nontarget expressing cells. Moreover, these ADCs were shown to promote altered splicing products in N87 cells in vitro, consistent with their putative mechanism of action. In addition, the exposure of the ADCs was sufficient to result in excellent potency in a gastric cancer xenograft model at doses as low as 1.5 mg/kg that was superior to the clinically approved ADC T-DM1. The results presented herein therefore open the door to further exploring splicing inhibition as a potential new mode-of-action for novel ADCs.


Assuntos
Produtos Biológicos/química , Imunoconjugados/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Ácidos Carboxílicos/química , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cisteína/química , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Lisina/química , Maleimidas/química , Camundongos , Piranos/química , Distribuição Tecidual
15.
Bioconjug Chem ; 27(7): 1645-54, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206324

RESUMO

Antibody-drug conjugates (ADC) are currently an active area of research, focused primarily on oncology therapeutics, but also to a limited extent on other areas such as infectious disease. The success of this type of targeted drug delivery is dependent upon many factors, one of which is the performance of the linker in releasing an active drug moiety under the appropriate conditions. As a tool in the development of linker/payload chemistry, we have developed an in vitro method for the identification of payload species released from ADCs in the presence of lysosomal enzymes. This method utilizes commercially available human liver S9 fraction as the source of these enzymes, and this has certain advantages over lysosomal fractions or purified enzymes. This article describes the characterization and performance of this assay with multiple ADCs composed of known and novel linkers and payloads. Additionally, we report the observation of incomplete degradation of mAb protein chains by lysosomal enzymes in vitro, believed to be the first report of this phenomenon involving an ADC therapeutic.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Imunoconjugados/química , Animais , Catepsina B/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Humanos , Fígado/citologia , Lisossomos/enzimologia , Espectrometria de Massas , Camundongos , Ratos
16.
ACS Med Chem Lett ; 6(5): 596-601, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005540

RESUMO

Herein we describe the design and synthesis of a series of pyridopyrazine-1,6-dione γ-secretase modulators (GSMs) for Alzheimer's disease (AD) that achieve good alignment of potency, metabolic stability, and low MDR efflux ratios, while also maintaining favorable physicochemical properties. Specifically, incorporation of fluorine enabled design of metabolically less liable lipophilic alkyl substituents to increase potency without compromising the sp(3)-character. The lead compound 21 (PF-06442609) displayed a favorable rodent pharmacokinetic profile, and robust reductions of brain Aß42 and Aß40 were observed in a guinea pig time-course experiment.

17.
J Med Chem ; 57(24): 10527-43, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25431858

RESUMO

Auristatins, synthetic analogues of the antineoplastic natural product Dolastatin 10, are ultrapotent cytotoxic microtubule inhibitors that are clinically used as payloads in antibody-drug conjugates (ADCs). The design and synthesis of several new auristatin analogues with N-terminal modifications that include amino acids with α,α-disubstituted carbon atoms are described, including the discovery of our lead auristatin, PF-06380101. This modification of the peptide structure is unprecedented and led to analogues with excellent potencies in tumor cell proliferation assays and differential ADME properties when compared to other synthetic auristatin analogues that are used in the preparation of ADCs. In addition, auristatin cocrystal structures with tubulin are being presented that allow for the detailed examination of their binding modes. A surprising finding is that all analyzed analogues have a cis-configuration at the Val-Dil amide bond in their functionally relevant tubulin bound state, whereas in solution this bond is exclusively in the trans-configuration. This remarkable observation shines light onto the preferred binding mode of auristatins and serves as a valuable tool for structure-based drug design.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Área Sob a Curva , Células Cultivadas , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Ratos , Ratos Wistar , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Tubulina (Proteína)/metabolismo
18.
J Med Chem ; 57(3): 1046-62, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24428186

RESUMO

Herein we describe the design and synthesis of a novel series of γ-secretase modulators (GSMs) that incorporates a pyridopiperazine-1,6-dione ring system. To align improved potency with favorable ADME and in vitro safety, we applied prospective physicochemical property-driven design coupled with parallel medicinal chemistry techniques to arrive at a novel series containing a conformationally restricted core. Lead compound 51 exhibited good in vitro potency and ADME, which translated into a favorable in vivo pharmacokinetic profile. Furthermore, robust reduction of brain Aß42 was observed in guinea pig at 30 mg/kg dosed orally. Through chemical biology efforts involving the design and synthesis of a clickable photoreactive probe, we demonstrated specific labeling of the presenilin N-terminal fragment (PS1-NTF) within the γ-secretase complex, thus gaining insight into the binding site of this series of GSMs.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Piridazinas/síntese química , Piridinas/síntese química , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Desenho de Fármacos , Cobaias , Células HEK293 , Humanos , Fragmentos de Peptídeos/metabolismo , Presenilina-1/química , Piridazinas/farmacocinética , Piridazinas/farmacologia , Piridinas/farmacocinética , Piridinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
19.
Bioorg Med Chem Lett ; 23(10): 2955-61, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23566517
20.
Bioorg Med Chem Lett ; 22(8): 2906-11, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22429469

RESUMO

We report the discovery and optimization of a novel series of dihydrobenzofuran amides as γ-secretase modulators (GSMs). Strategies for aligning in vitro potency with drug-like physicochemical properties and good microsomal stability while avoiding P-gp mediated efflux are discussed. Lead compounds such as 35 and 43 have moderate to good in vitro potency and excellent selectivity against Notch. Good oral bioavailability was achieved as well as robust brain Aß42 lowering activity at 100 mg/kg po dose.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Desenho de Fármacos , Administração Oral , Amidas/química , Animais , Benzofuranos/síntese química , Benzofuranos/química , Benzofuranos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cobaias , Concentração Inibidora 50 , Estrutura Molecular , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA