Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Med Life ; 17(3): 261-272, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39044934

RESUMO

Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it may lead to early aging. Various markers of aging, including telomere attrition, epigenetic alterations, altered protein homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity and mitigate the onset of premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates between periods of fasting and feeding, has emerged as a promising dietary strategy that holds potential in counteracting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and fork head box O (FOXO). By targeting these pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals affected by obesity.


Assuntos
Senilidade Prematura , Jejum Intermitente , Obesidade , Animais , Humanos , Envelhecimento , Senilidade Prematura/prevenção & controle , Senescência Celular , Obesidade/prevenção & controle , Transdução de Sinais
2.
Microbiol Res ; 281: 127612, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244256

RESUMO

Co-infections with Staphylococcus aureus and Pseudomonas aeruginosa are common in patients with chronic wounds, but little is known about their synergistic effect mediated by extracellular vesicles (EVs). In this study, we investigated the effect of EVs derived from S. aureus (SaEVs) on the pathogenicity of P. aeruginosa. By using lipophilic dye, we could confirm the fusion between SaEV and P. aeruginosa membranes. However, SaEVs did not alter the growth and antibiotic susceptible pattern of P. aeruginosa. Differential proteomic analysis between SaEV-treated and non-treated P. aeruginosa was performed, and the results revealed that lipopolysaccharide (LPS) biosynthesis protein in P. aeruginosa significantly increased after SaEV-treatment. Regarding this result, we also found that SaEVs promoted LPS production, biofilm formation, and expression of polysaccharide polymerization-related genes in P. aeruginosa. Furthermore, invasion of epithelial cells by SaEV-pretreated P. aeruginosa was enhanced. On the other hand, uptake of P. aeruginosa by RAW 264.7 macrophages was impaired after pretreatment P. aeruginosa with SaEVs. Proteomic analysis SaEVs revealed that SaEVs contain the proteins involving in host cell colonization, inhibition of host immune response, anti-phagocytosis of the macrophages, and protein translocation and iron uptake of S. aureus. In conclusion, SaEVs serve as a mediator that promote P. aeruginosa pathogenicity by enhancing LPS biosynthesis, biofilm formation, epithelial cell invasion, and macrophage uptake impairment.


Assuntos
Vesículas Extracelulares , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Pseudomonas aeruginosa , Lipopolissacarídeos , Proteômica , Virulência , Biofilmes
3.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247818

RESUMO

Candida albicans is an opportunistic pathogenic yeast that can survive in both normoxic and hypoxic environments. The involvement of C. albicans secretome on host biological processes has been demonstrated. However, the immunoregulatory function of C. albicans secretome released under hypoxic condition remains unclear. This study demonstrated the differences in cytokine responses and protein profiles between secretomes prepared under normoxic and hypoxic conditions. Furthermore, the immunoregulatory effects of heat shock protein SSA1(Ssa1), a protein candidate enriched in the hypoxic secretome, were investigated. Stimulation of mouse bone marrow-derived macrophages (BMMs) with Ssa1 resulted in the significant production of interleukin (IL)-10, IL-6, and tumor necrosis factor (TNF)-α as well as the significant expression of M2b macrophage markers (CD86, CD274 and tumor necrosis factor superfamily member 14), suggesting that C. albicans Ssa1 may promote macrophage polarization towards an M2b-like phenotype. Proteomic analysis of Ssa1-treated BMMs also revealed that Ssa1 reduced inflammation-related factors (IL-18-binding protein, IL-1 receptor antagonist protein, OX-2 membrane glycoprotein and cis-aconitate decarboxylase) and enhanced the proteins involved in anti-inflammatory response (CMRF35-like molecule 3 and macrophage colony-stimulating factor 1 receptor). Based on these results, we investigated the effect of Ssa1 on C. albicans infection and showed that Ssa1 inhibited the uptake of C. albicans by BMMs. Taken together, our results suggest that C. albicans alters its secretome, particularly by promoting the release of Ssa1, to modulate host immune response and survive under hypoxic conditions.


Assuntos
Candida albicans , Proteínas de Choque Térmico , Macrófagos , Animais , Camundongos , Candida albicans/metabolismo , Candida albicans/fisiologia , Proteínas de Choque Térmico/metabolismo , Hipóxia , Proteômica , Secretoma , Fatores de Necrose Tumoral , Interações Hospedeiro-Parasita , Macrófagos/imunologia , Macrófagos/metabolismo
4.
BMC Microbiol ; 23(1): 159, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264297

RESUMO

BACKGROUND: Infection with Helicobacter pylori as the cause of gastric cancer is a global public health concern. In addition to protecting germs from antibiotics, biofilms reduce the efficacy of H. pylori eradication therapy. The nucleotide polymorphisms (SNPs) related with the biofilm forming phenotype of Helicobacter pylori were studied. RESULTS: Fifty-six H. pylori isolate from Bangladeshi patients were included in this cross-sectional study. Crystal violet assay was used to quantify biofilm amount, and the strains were classified into high- and low-biofilm formers As a result, strains were classified as 19.6% high- and 81.4% low-biofilm formers. These phenotypes were not related to specific clades in the phylogenetic analysis. The accessories genes associated with biofilm from whole-genome sequences were extracted and analysed, and SNPs among the previously reported biofilm-related genes were analysed. Biofilm formation was significantly associated with SNPs of alpA, alpB, cagE, cgt, csd4, csd5, futB, gluP, homD, and murF (P < 0.05). Among the SNPs reported in alpB, strains encoding the N156K, G160S, and A223V mutations were high-biofilm formers. CONCLUSIONS: This study revealed the potential role of SNPs in biofilm formation and proposed a method to detect mutation in biofilm from whole-genome sequences.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Estudos Transversais , Filogenia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico
5.
Curr Res Microb Sci ; 4: 100190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131486

RESUMO

Staphylococcus aureus and Pseudomonas aeruginosa are well-known opportunistic pathogens that frequently coexist in chronic wounds and cystic fibrosis. The exoproducts of P. aeruginosa have been shown to affect the growth and pathogenicity of S. aureus, but the detailed mechanisms are not well understood. In this study, we investigated the effect of extracellular vesicles from P. aeruginosa (PaEVs) on the growth of S. aureus. We found that PaEVs inhibited the S. aureus growth independently of iron chelation and showed no bactericidal activity. This growth inhibitory effect was also observed with methicillin-resistant S. aureus but not with Acinetobacter baumannii, Enterococcus faecalis, S. Typhimurium, E. coli, Listeria monocytogenes, or Candida albicans, suggesting that the growth inhibitory effect of PaEVs is highly specific for S. aureus. To better understand the detailed mechanism, the difference in protein production of S. aureus between PaEV-treated and non-treated groups was further analyzed. The results revealed that lactate dehydrogenase 2 and formate acetyltransferase enzymes in the pyruvate fermentation pathway were significantly reduced after PaEV treatment. Likewise, the expression of ldh2 gene for lactate dehydrogenase 2 and pflB gene for formate acetyltransferase in S. aureus was reduced by PaEV treatment. In addition, this inhibitory effect of PaEVs was abolished by supplementation with pyruvate or oxygen. These results suggest that PaEVs inhibit the growth of S. aureus by suppressing the pyruvate fermentation pathway. This study reported a mechanism of PaEVs in inhibiting S. aureus growth which may be important for better management of S. aureus and P. aeruginosa co-infections.

6.
PLoS One ; 18(3): e0283109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920961

RESUMO

Acinetobacter baumannii is a major causative agent of nosocomial infections and its outer membrane vesicles (AbOMVs) have been shown to be involved in pathogenicity by transporting virulence factors and transferring information for communication between pathogens and host cells. Despite the fact that the infected sites of A. baumannii such as lungs and skin soft tissues are hypoxic, most studies on AbOMV virulence have used AbOMVs prepared under aerobic conditions. The present study aims to elucidate the protein profile and pathogenic impact of AbOMVs released under hypoxic condition. AbOMVs were isolated from A. baumannii under normoxic and hypoxic conditions, and their protein profiles were compared. The different effects of both normoxic and hypoxic AbOMVs in cytokine response from mouse macrophages, cytotoxicity to the human lung epithelial cells, and bacterial invasion were then investigated. Our results showed that A. baumannii under hypoxia released larger amounts of OMVs with different protein profiles. Although the cytotoxic effect of AbOMVs from normoxia and hypoxia were comparable, AbOMVs from normoxia induced higher TNF-α production and invasion of Staphylococcus aureus and Pseudomonas aeruginosa than those from hypoxia. On the other hand, AbOMVs significantly enhanced A. baumannii invasion into lung epithelial cells in a dose-dependent manner. These results clearly demonstrate that AbOMVs released from normoxic and hypoxic have different impacts in pathogenesis. This finding provides new insight into the complex interactions between A. baumannii, coinfecting pathogens and host cells via OMVs, in particular the different pathogenic effects of AbOMVs under normoxic and hypoxic conditions.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Animais , Camundongos , Humanos , Proteínas da Membrana Bacteriana Externa/metabolismo , Vesículas Secretórias/metabolismo , Proteômica , Infecções por Acinetobacter/microbiologia , Hipóxia/metabolismo
7.
Antibiotics (Basel) ; 12(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36830189

RESUMO

Current management of gastric inflammation involves the eradication of Helicobacter pylori. However, the effectiveness of commonly used antibiotics against H. pylori infection has decreased due to antibiotic resistance. Phenotypic-based diagnostics are laborious and finding the cause of resistance can be difficult. Therefore, early detection and understanding of the underlying mechanism of this resistance are necessary. This study evaluated the mutations in the genes related to the Antimicrobial Resistance (AMR) of the clinical isolates from Bangladeshi subjects. Whole-genome sequencing was performed on 56 isolates and the genes (such as pbp1a, rdxA, ribF, fur, gyrA, gyrB, 23S rRNA, and infB) were extracted. The reads were assembled, and the SNPs were extracted by the latest pipeline for antibiotic mutation analysis, ARIBA. The mutations and the association with the antibiotic phenotypes were evaluated using Fisher's exact test. In this study, the clarithromycin resistance rate was high, 39.3% (22/56), with the median MIC 24 mg/L ranging from 2 to 128 mg/L. The mutation of A2147G was significantly associated with resistance (p = 0.000018) but not in locus A2146G (p = 0.056). Levofloxacin also posed a high resistance. We observed that the mutation of D91N (but not D91Y) (p = 0.002) and N87K (p = 0.002) of gyrA was associated with levofloxacin resistance. Mutations in locus A343V (p = 0.041) of gyrB also showed a significant association. Meanwhile, in the pbp1a gene, several mutations might explain the resistance; they were G594fs (p = 0.036), K306R (p = 0.036), N562Y (p = 0.0006), and V45I (p = 0.018). The prevalence of metronidazole was exceptionally high (96.4%), and numerous mutations occurred in rdxA genes, including the truncation of genes. These results imply that the mutation in genes encoding the target protein of antibiotics remains the critical resistance mechanism in H. pylori.

8.
DEN Open ; 3(1): e209, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36714062

RESUMO

Objectives: Gastrointestinal endoscopy increases the risk of bacterial exposure to endoscopists. However, before 2019, most endoscopists did not pay attention to microorganism transmission from patients. This study aimed to investigate the incidence of bacterial exposure to endoscopists' faces during gastrointestinal endoscopic procedures using the bacterial culture method. Methods: This was a single-centered, retrospective study including endoscopists who performed various gastrointestinal endoscopy procedures at the Division of Endoscopy, Hirosaki University Hospital between August 31 and October 6, 2020. Endoscopists wore surgical masks and affixed pre-sterilized films over them. Following the gastrointestinal endoscopic procedures, attached microbes were collected from the endoscopists' surface films using sterilized swabs. Collected microorganisms were cultured on tryptic soy agar and 5% sheep blood agar, and the incidence of bacterial exposure was determined by bacterial culture positivity. Cultured bacteria were identified by gram staining and 16S rRNA gene sequencing. Results: Bacterial culture positivity was 12.6%, and it was significantly higher in therapeutic than in diagnostic endoscopy. Notably, therapeutic endoscopy increased bacterial culture positivity in colonoscopy, but not in esophagogastroduodenoscopy. Staphylococci, including Staphylococcus epidermidis and Staphylococcus capitis, were the most commonly found bacteria in samples identified through 16S rRNA gene sequencing. Conclusions: The risk of bacterial exposure to the endoscopist's face was increased in colonoscopy treatment procedures. Therefore, endoscopists should be aware of the significant risk of microbial infection from scattering fluid that comes from the endoscopy's working channel.

9.
Microorganisms ; 10(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35056645

RESUMO

Evaluation of Helicobacter pylori resistance to antibiotics is crucial for treatment strategy in Myanmar. Moreover, the genetic mechanisms involved remain unknown. We aimed to investigate the prevalence of H. pylori infection, antibiotic resistance, and genetic mechanisms in Myanmar. One hundred fifty patients from two cities, Mawlamyine (n = 99) and Yangon (n = 51), were recruited. The prevalence of H. pylori infection was 43.3% (65/150). The successfully cultured H. pylori isolates (n = 65) were tested for antibiotic susceptibility to metronidazole, levofloxacin, clarithromycin, amoxicillin, and tetracycline by Etest, and the resistance rates were 80%, 33.8%, 7.7%, 4.6%, and 0%, respectively. In the multidrug resistance pattern, the metronidazole-levofloxacin resistance was highest for double-drug resistance (16/19; 84.2%), and all triple-drug resistance (3/3) was clarithromycin-metronidazole-levofloxacin resistance. Twenty-three strains were subjected to next-generation sequencing to study their genetic mechanisms. Interestingly, none of the strains resistant to clarithromycin had well-known mutations in 23S rRNA (e.g., A2142G, A2142C, and A2143G). New type mutation genotypes such as pbp1-A (e.g., V45I, S/R414R), 23S rRNA (e.g., T248C), gyrA (e.g., D210N, K230Q), gyrB (e.g., A584V, N679H), rdxA (e.g., V175I, S91P), and frxA (e.g., L33M) were also detected. In conclusion, the prevalence of H. pylori infection and its antibiotic resistance to metronidazole was high in Myanmar. The H. pylori eradication regimen with classical triple therapy, including amoxicillin and clarithromycin, can be used as the first-line therapy in Myanmar. In addition, next-generation sequencing is a powerful high-throughput method for identifying mutations within antibiotic resistance genes and monitoring the spread of H. pylori antibiotic-resistant strains.

10.
Emerg Microbes Infect ; 10(1): 2000-2009, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34623928

RESUMO

Extracellular vesicles (EVs) released from bacteria are enclosed particles carrying biological active molecules. They have been shown to play a role in bacterial communications and delivery of virulence factors to the host cells. Staphylococcus aureus is an opportunistic pathogen causing a variety of infections ranging from impetigo to septicaemia. The EVs released from S. aureus have a high potential to be used for vaccine development against S. aureus infections. However, it is important to clearly understand the impact of SaEVs on the host's immune response. Our study demonstrated that purified EVs from a clinical isolated methicillin-resistant S. aureus (SaEVs) significantly stimulated proinflammatory cytokine production in mouse immune cells and induced host cell death. An impairment of cytokine production in the Toll-like receptor (TLR)-silenced macrophages suggested that SaEVs stimulate proinflammatory response via TLRs 2, 4 and 9. In mouse infection model, the results demonstrated that SaEV immunization did not provide protective effect. In contrast, all SaEV-immunized mice died within Day 1 after methicillin-resistant S. aureus (MRSA) infection. After MRSA infection for 3 h, the production of IL-6, TNF-α and IL-17 in the spleen of SaEV-immunized mice was significantly higher than that of control mice. On Day 5 after the second immunization, total IgE in the serum was significantly enhanced, and a high titre of Th2-related cytokines was remarkably induced after ex vivo stimulation of the spleen cells with SaEVs. These results suggested that MRSA-derived EVs act as an immunostimulant that induces inflammatory response and IgE-mediated hypersensitivity after MRSA infection.


Assuntos
Citocinas/imunologia , Vesículas Extracelulares/imunologia , Hipersensibilidade Imediata/etiologia , Hipersensibilidade Imediata/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Infecções Estafilocócicas/complicações , Animais , Citocinas/genética , Vesículas Extracelulares/genética , Feminino , Humanos , Hipersensibilidade Imediata/genética , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/imunologia , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA