Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884813

RESUMO

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Assuntos
Malária , Parasitos , Plasmodium , Animais , Malária/parasitologia , Regulação da Expressão Gênica , Plasmodium falciparum/genética
2.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37293082

RESUMO

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

4.
Nat Commun ; 13(1): 601, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105893

RESUMO

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. We show that two consecutive mutations (R203K/G204R) in the nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found increased interaction of GSK3A kinase simultaneously with hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein. Furthermore, the host cell transcriptome analysis suggests that the mutant N protein produces dysregulated interferon response genes. Here, we provide crucial information in linking the R203K/G204R mutations in the N protein to modulations of host-virus interactions and underline the potential of the nucleocapsid protein as a drug target during infection.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Genoma Viral , Mutação de Sentido Incorreto , SARS-CoV-2/genética , COVID-19/enzimologia , COVID-19/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Fosforilação , Filogenia , Ligação Proteica , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Arábia Saudita , Carga Viral , Replicação Viral
5.
Commun Biol ; 4(1): 760, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145386

RESUMO

PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.


Assuntos
Estágios do Ciclo de Vida/genética , Meiose/genética , Mitose/genética , Plasmodium/crescimento & desenvolvimento , Proteína Fosfatase 1/genética , Proteínas de Protozoários/genética , Proliferação de Células/genética , Malária/prevenção & controle , Malária/transmissão , Mosquitos Vetores/parasitologia , Plasmodium/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Protozoários/metabolismo
6.
Elife ; 92020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32568069

RESUMO

Cell cycle transitions are generally triggered by variation in the activity of cyclin-dependent kinases (CDKs) bound to cyclins. Malaria-causing parasites have a life cycle with unique cell-division cycles, and a repertoire of divergent CDKs and cyclins of poorly understood function and interdependency. We show that Plasmodium berghei CDK-related kinase 5 (CRK5), is a critical regulator of atypical mitosis in the gametogony and is required for mosquito transmission. It phosphorylates canonical CDK motifs of components in the pre-replicative complex and is essential for DNA replication. During a replicative cycle, CRK5 stably interacts with a single Plasmodium-specific cyclin (SOC2), although we obtained no evidence of SOC2 cycling by transcription, translation or degradation. Our results provide evidence that during Plasmodium male gametogony, this divergent cyclin/CDK pair fills the functional space of other eukaryotic cell-cycle kinases controlling DNA replication.


Assuntos
Quinase 5 Dependente de Ciclina/genética , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Transdução de Sinais , Quinase 5 Dependente de Ciclina/metabolismo , Malária/transmissão , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo
7.
Malar J ; 18(1): 26, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683099

RESUMO

BACKGROUND: The transcriptional regulation that occurs in malaria parasites during the erythrocytic stages of infection can be studied in vivo with rodent malaria parasites propagated in mice. Time-series transcriptome profiling commonly involves the euthanasia of groups of mice at specific time points followed by the extraction of parasite RNA from whole blood samples. Current methodologies for parasite RNA extraction involve several steps and when multiple time points are profiled, these protocols are laborious, time-consuming, and require the euthanization of large cohorts of mice. RESULTS: A simplified protocol has been designed for parasite RNA extraction from blood volumes as low as 20 µL (microsamples), serially bled from mice via tail snips and directly lysed with TRIzol reagent. Gene expression data derived from microsampling using RNA-seq were closely matched to those derived from larger volumes of leucocyte-depleted and saponin-treated blood obtained from euthanized mice with high reproducibility between biological replicates. Transcriptome profiling of microsamples taken at different time points during the intra-erythrocytic developmental cycle of the rodent malaria parasite Plasmodium vinckei revealed the transcriptional cascade commonly observed in malaria parasites. CONCLUSIONS: Microsampling is a quick, robust and cost-efficient approach to sample collection for in vivo time-series transcriptomic studies in rodent malaria parasites.


Assuntos
Sangue/parasitologia , Eritrócitos/parasitologia , Perfilação da Expressão Gênica/métodos , Plasmodium/isolamento & purificação , RNA de Protozoário/análise , Animais , Feminino , Perfilação da Expressão Gênica/economia , Perfilação da Expressão Gênica/instrumentação , Malária/sangue , Malária/parasitologia , Camundongos , Camundongos Endogâmicos CBA , Plasmodium chabaudi/isolamento & purificação , Reprodutibilidade dos Testes
8.
Acta Trop ; 164: 438-447, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27720625

RESUMO

High density oligonucleotide microarrays have been used on Plasmodium vivax field isolates to estimate whole genome expression. However, no microarray platform has been experimentally optimized for studying the transcriptome of field isolates. In the present study, we adopted both bioinformatics and experimental testing approaches to select best optimized probes suitable for detecting parasite transcripts from field samples and included them in designing a custom 15K P. vivax microarray. This microarray has long oligonucleotide probes (60mer) that were in-situ synthesized onto glass slides using Agilent SurePrint technology and has been developed into an 8X15K format (8 identical arrays on a single slide). Probes in this array were experimentally validated and represents 4180 P. vivax genes in sense orientation, of which 1219 genes have also probes in antisense orientation. Validation of the 15K array by using field samples (n=14) has shown 99% of parasite transcript detection from any of the samples. Correlation analysis between duplicate probes (n=85) present in the arrays showed perfect correlation (r2=0.98) indicating the reproducibility. Multiple probes representing the same gene exhibited similar kind of expression pattern across the samples (positive correlation, r≥0.6). Comparison of hybridization data with the previous studies and quantitative real-time PCR experiments were performed to highlight the microarray validation procedure. This array is unique in its design, and results indicate that the array is sensitive and reproducible. Hence, this microarray could be a valuable functional genomics tool to generate reliable expression data from P. vivax field isolates.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Malária Vivax/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Plasmodium vivax/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
9.
Genom Data ; 9: 118-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27489776

RESUMO

Malarial parasite P. falciparum, an apicomplexan protozoan has a 23.3 MB nuclear genome and encodes ~ 5600 transcripts. The genetic diversity of the parasite within and across geographical zones is a challenge to gene expression studies which are essential for understanding of disease process, outcome and developing markers for diagnostics and prognostics. Here, we describe the strategy involved in designing a custom P. falciparum 15K array using the Agilent platform and Genotypic's Right Design methodology to study the transcriptome of Indian field isolates for which genome sequence information is limited. The array contains probes representing genome sequences of two distinct geographical isolates (i.e. 3D7 and HB3) and sub-telomeric var gene sequences of a third isolate (IT4) known to adhere in culture condition. Probes in the array have been selected based on their efficiency to detect transcripts through a 244K array experimentation. Array performance for the 15K array, was evaluated and validated using RNA materials from P. falciparum clinical isolates. A large percentage (91%) of the represented transcripts was detected from Indian P. falciparum patient isolates. Replicated probes and multiple probes representing the same gene showed perfect correlation between them suggesting good probe performance. Additional transcripts could be detected due to inclusion of unique probes representing HB3 strain transcripts. Variant surface antigen (VSA) transcripts were detected by optimized probes representing the VSA genes of three geographically distinct strains. The 15K cross strain P. falciparum array has shown good efficiency in detecting transcripts from P. falciparum parasite samples isolated from patients. The low parasite loads and presence of host RNA makes arrays a preferred platform for gene expression studies over RNA-Seq.

10.
Int J Parasitol ; 46(11): 685-96, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392654

RESUMO

Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.


Assuntos
Genoma de Protozoário , Família Multigênica , Plasmodium malariae/genética , Plasmodium ovale/genética , Adulto , África Ocidental , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície/genética , China , Homólogo 5 da Proteína Cromobox , Variação Genética , Humanos , Sequências Repetitivas Dispersas/genética , Masculino , Proteínas de Membrana/genética , Família Multigênica/genética , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Plasmodium malariae/classificação , Plasmodium ovale/classificação , Plasmodium vivax/classificação , Plasmodium vivax/genética , Adulto Jovem
11.
Infect Genet Evol ; 35: 96-108, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26247716

RESUMO

Systems biology approaches that are based on gene expression and bioinformatics analysis have been successful in predicting the functions of many genes in Plasmodium falciparum, a protozoan parasite responsible for most of the deaths due to malaria. However, approaches that can provide information about the biological processes that are active in this parasite in vivo during complicated malaria conditions have been scarcely deployed. Here we report the analysis of a weighted gene co-expression based network for P. falciparum, from non-cerebral clinical complications. Gene expression profiles of 20 P. falciparum clinical isolates were utilized to construct the same. A total of 20 highly interacting modules were identified post network creation. In 12 of these modules, at least 10% of the member genes, were found to be differentially regulated in parasites from patient isolates showing complications, when compared with those from patients with uncomplicated disease. Enrichment analysis helped identify biological processes like oxidation-reduction, electron transport chain, protein synthesis, ubiquitin dependent catabolic processes, RNA binding and purine nucleotide metabolic processes as associated with these modules. Additionally, for each module, highly connected hub genes were identified. Detailed functional analysis of many of these, which have known annotated functions underline their importance in parasite development and survival. This suggests, that other hub genes with unknown functions may also be playing crucial roles in parasite biology, and, are potential candidates for intervention strategies.


Assuntos
Expressão Gênica , Malária Falciparum/complicações , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Malária Falciparum/parasitologia , Análise de Sequência com Séries de Oligonucleotídeos
12.
Mol Biochem Parasitol ; 201(1): 31-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26022315

RESUMO

In temperate and sub-tropical regions of Asia and Latin America, complicated malaria manifested as hepatic dysfunction or renal dysfunction is seen in all age groups. There has been a concerted focus on understanding the patho-physiological and molecular basis of complicated malaria in children, much less is known about it in adults. We report here, the analysis of data from a custom, cross strain microarray (Agilent Platform) using material from adult patient samples, showing hepatic dysfunction or renal failure. These are the most common manifestations seen in adults along with cerebral malaria. The data has been analyzed with reference to variant surface antigens, encoded by the var, rifin and stevor gene families. The differential regulation profiles of key genes (comparison between Plasmodium falciparum complicated and uncomplicated isolates) have been observed. The exportome has been analyzed using similar parameters. Gene ontology term based functional enrichment of differentially regulated genes identified, up-regulated genes statistically enriched (P<0.05) to critical biological processes like generation of precursor metabolite and energy, chromosome organization and electron transport chain. Systems network based functional enrichment of overall differentially regulated genes yielded a similar result. We are reporting here, up-regulation of var group B and C genes whose proteins are predicted to interact with CD36 receptor in the host, the up-regulation of domain cassette 13 (DC13) containing var group A, as also the up-regulation of group A rifins and many of the stevors. This is contrary to most other reports from pediatric patients, with cerebral malaria where the up-regulation of mostly var A group genes have been seen. A protein-protein interaction based network has been created and analysis performed. This co-expression and text mining based network has shown overall connectivity between the variant surface antigens (VSA) and the exportome. The up-regulation of var group B and C genes encoding PfEMP1 with different domain architecture would be important for deciding strategies for disease prevention.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antígenos de Protozoários/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Perfilação da Expressão Gênica , Humanos , Nefropatias/etiologia , Nefropatias/patologia , Hepatopatias/etiologia , Hepatopatias/patologia , Malária Falciparum/complicações , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Plasmodium falciparum/metabolismo , Mapas de Interação de Proteínas , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA
13.
Exp Parasitol ; 141: 39-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657575

RESUMO

Mechanisms regulating gene expression in malaria parasites are not well understood. Little is known about how the parasite regulates its gene expression during transition from one developmental stage to another and in response to various environmental conditions. Parasites in a diseased host face environments which differ from the static, well adapted in vitro conditions. Parasites thus need to adapt quickly and effectively to these conditions by establishing transcriptional states which are best suited for better survival. With the discovery of natural antisense transcripts (NATs) in this parasite and considering the various proposed mechanisms by which NATs might regulate gene expression, it has been speculated that these might be playing a critical role in gene regulation. We report here the diversity of NATs in this parasite, using isolates taken directly from patients with differing clinical symptoms caused by malaria infection. Using a custom designed strand specific whole genome microarray, a total of 797 NATs targeted against annotated loci have been detected. Out of these, 545 NATs are unique to this study. The majority of NATs were positively correlated with the expression pattern of the sense transcript. However, 96 genes showed a change in sense/antisense ratio on comparison between uncomplicated and complicated disease conditions. The antisense transcripts map to a broad range of biochemical/metabolic pathways, especially pathways pertaining to the central carbon metabolism and stress related pathways. Our data strongly suggests that a large group of NATs detected here are unannotated transcription units antisense to annotated gene models. The results reveal a previously unknown set of NATs that prevails in this parasite, their differential regulation in disease conditions and mapping to functionally well annotated genes. The results detailed here call for studies to deduce the possible mechanism of action of NATs, which would further help in understanding the in vivo pathological adaptations of these parasites.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , RNA Antissenso/análise , Adolescente , Adulto , Mapeamento Cromossômico , Feminino , Ontologia Genética , Genoma de Protozoário , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Malária Falciparum/complicações , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium falciparum/classificação , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/metabolismo , RNA Antissenso/sangue , RNA de Protozoário/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Adulto Jovem
14.
Genom Data ; 2: 199-201, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484095

RESUMO

Natural antisense transcripts (NATs) have been detected in many organisms and shown to regulate gene expression. Similarly, NATs have also been observed in malaria parasites with most studies focused on Plasmodium falciparum. There were no reports on the presence of NATs in Plasmodium vivax, which has also been shown to cause severe malaria like P. falciparum, until a recent study published by us. To identify in vivo prevalence of antisense transcripts in P. vivax clinical isolates, we performed whole genome expression profiling using a custom designed strand-specific microarray that contains probes for both sense and antisense strands. Here we describe the experimental methods and analysis of the microarray data available in Gene Expression Omnibus (GEO) under GSE45165. Our data provides a resource for exploring the presence of antisense transcripts in P. vivax isolated from patients showing varying clinical symptoms. Related information about the description and interpretation of the data can be found in a recent publication by Boopathi and colleagues in Infection, Genetics and Evolution 2013.

15.
Genom Data ; 2: 393-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484136

RESUMO

Antisense transcription is pervasive among biological systems and one of the products of antisense transcription is natural antisense transcripts (NATs). Emerging evidences suggest that they are key regulators of gene expression. With the discovery of NATs in Plasmodium falciparum, it has been suggested that these might also be playing regulatory roles in this parasite. However, all the reports describing the diversity of NATs have come from parasites in culture condition except for a recent study published by us. In order to explore the in vivo diversity of NATs in P. falciparum clinical isolates, we performed a whole genome expression profiling using a strand-specific 244 K microarray that contains probes for both sense and antisense transcripts. In this report, we describe the experimental procedure and analysis thereof of the microarray data published recently in Gene Expression Omnibus (GEO) under accession number GSE44921. This published data provide a wealth of information about the prevalence of NATs in P. falciparum clinical isolates from patients with diverse malaria related disease conditions. Supplementary information about the description and interpretation of the data can be found in a recent publication by Subudhi et al. in Experimental Parasitology (2014).

16.
Infect Genet Evol ; 20: 428-43, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121022

RESUMO

Plasmodium vivax is the most geographically widespread human malaria parasite causing approximately 130-435 million infections annually. It is an economic burden in many parts of the world and poses a public health challenge along with the other Plasmodium sp. The biology of this parasite is less studied and poorly understood, in spite of these facts. Emerging evidence of severe complications due to infections by this parasite provides an impetus to focus research on the same. Investigating the parasite directly from infected patients is the best way to study its biology and pathogenic mechanisms. Gene expression studies of this parasite directly obtained from the patients has provided evidence of gene regulation resulting in varying amount of transcript levels in the different blood stages. The mechanisms regulating gene expression in malaria parasites are not well understood. Discovery of Natural Antisense Transcripts (NATs) in Plasmodium falciparum has suggested that these might play an important role in regulating gene expression. We report here the genome-wide occurrence of NATs in P. vivax parasites from patients with differing clinical symptoms. A total of 1348 NATs against annotated gene loci have been detected using a custom designed microarray with strand specific probes. Majority of NATs identified from this study shows positive correlation with the expression pattern of the sense (S) transcript. Our data also shows condition specific expression patterns of varying S and antisense (AS) transcript levels. Genes with AS transcripts enrich to various biological processes. To our knowledge this is the first report on the presence of NATs from P. vivax obtained from infected patients with different disease complications. The data suggests differential regulation of gene expression in diverse clinical conditions, as shown by differing sense/antisense ratios and would lead to future detailed investigations of gene regulation.


Assuntos
Elementos Antissenso (Genética)/genética , Regulação da Expressão Gênica/genética , Malária Vivax/genética , Plasmodium vivax/genética , RNA Antissenso/genética , Adolescente , Adulto , Mapeamento Cromossômico , Feminino , Humanos , Malária Vivax/parasitologia , Masculino , Plasmodium vivax/isolamento & purificação , RNA de Protozoário/sangue , RNA de Protozoário/genética , Transcrição Gênica , Adulto Jovem
17.
Asian Pac J Trop Med ; 6(5): 346-51, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23608372

RESUMO

OBJECTIVE: To evaluate microscopy, OptiMAL(®) and multiplex PCR for the identification of Plasmodium falciparumm (P. falciparum) and Plasmodium vivax (P. vivax) from the field isolates of Bikaner, Rajasthan (Northwest India). METHODS: In this study, a multiplex PCR (P. falciparum and P. vivax) was further developed with the incorporation of Plasmodium malariae (P. malariae) specific primer and also a positive control. The performance of microscopy, plasmodium lactate dehydrogenase (pLDH) based malaria rapid diagnostic test OptiMAL(®) and 18S rRNA gene based multiplex PCR for the diagnosis of P. falciparum and P. vivax was compared. RESULTS: The three species multiplex PCR (P. falciparum, P. vivax and P. malariae) with an inbuilt positive control was developed and evaluated. In comparison with multiplex PCR, which showed the sensitivity and specificity of 99.36% (95%CI, 98.11%-100.00%) and 100.00% (95%CI, 100.00%-100.00%), the sensitivity and specificity of microscopy was 90.44% (95%CI, 88.84%-95.04%) and 99.22% (95%CI, 97.71%-100.00%), and OptiMAL(®) was 93.58% (95%CI, 89.75%-97.42%) and 97.69% (95%CI, 95.10%-100.00%). The efficiencies were 99.65%, 95.10% and 95.45% for multiplex PCR, microscopy and OptiMAL(®), respectively. CONCLUSIONS: Our results raise concerns over the overall sensitivities of microscopy and OptiMAL(®), when compared to the multiplex PCR and thus stress the need for new molecular interventions in the accurate detection of the malarial parasites. This further highlights the fact that further developments are needed to improve the performance of rapid diagnostic tests at field level.


Assuntos
Imunoensaio/métodos , Malária/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Adulto , Criança , DNA de Protozoário/análise , DNA de Protozoário/genética , Humanos , Índia , Malária/diagnóstico , Malária/genética , Microscopia/métodos , Parasitologia/métodos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
18.
Exp Parasitol ; 132(4): 410-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043980

RESUMO

Plasmodium vivax is the predominant species of the human malaria parasite present in the Indian subcontinent. There have been recent reports on Chloroquine (CQ) resistance and severe manifestations shown by P. vivax from different regions of the world including India. This study focuses on Bikaner, India where during the last few years there have been continuous reports of severe manifestations by both Plasmodium falciparum and P. vivax. This region has a widespread use of Chloroquine and Sulfadoxine-Pyrimethamine for the treatment of malaria, but the resistance profiles of these drugs are not available. We report here the profile of mutations in marker genes associated with Chloroquine and antifolate drug resistance among the P. vivax parasites obtained from patients with severe (n=30) and non-severe (n=48) manifestations from this region. Most isolates showed the wild type alleles for both the Chloroquine and antifolate resistance markers (P<0.0005). Except for one isolate showing Y976F mutation in the Pvmdr-1 gene, no reported mutation was observed in the Pvmdr-1 or Pvcrt gene. This is in accordance with the fact that till date no Chloroquine resistance has been reported from this region. However, the single isolate with a mutation in Pvmdr-1 may suggest the beginning of the trend towards decreased susceptibility to Chloroquine. The frequency of PvDHFR-PvDHPS two locus mutations was higher among the patients showing severe manifestations than the patient group with non-severe (uncomplicated) malaria (P<0.003). None of the parasites from patients with uncomplicated P. vivax malaria showed the mutant PvDHPS genotype. Novel mutations in PvDHFR (S117H) and PvDHPS (F365L, D459A and M601I) were observed only in the parasite population obtained from patients exhibiting severe complications. Preliminary homology modeling and molecular docking studies predicted that these mutations apparently do not have any effect on the binding of the drug molecule to the enzyme. However, the presence of novel mutations in the PvDHPS gene indicate a degree of polymorphism of this molecule which is in contrast to available published information.


Assuntos
Resistência a Medicamentos/genética , Antagonistas do Ácido Fólico/farmacologia , Malária Vivax/parasitologia , Mutação , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Di-Hidropteroato Sintase/genética , Feminino , Antagonistas do Ácido Fólico/uso terapêutico , Marcadores Genéticos/genética , Genótipo , Humanos , Índia , Malária Vivax/sangue , Malária Vivax/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Plasmodium vivax/genética , Polimorfismo Genético , Tetra-Hidrofolato Desidrogenase/genética , Adulto Jovem
19.
Platelets ; 21(8): 623-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21050055

RESUMO

The occurrence, relation and magnitude of thrombocytopenia in different species of malaria are not clearly defined. This study included 1,064 patients admitted with malaria to study thrombocytopenia (platelet count <150,000 /cumm) in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) mono infection and mixed infection (Pf + Pv). The species diagnosis was done by peripheral blood film (PBF) and rapid diagnostic test (RDT). Validation by polymerase chain reaction (PCR) was done only in patients with severe thrombocytopenia (platelet count <20,000 /cumm). The breakup of patients was 525 (49.34%) Pf, 460 (43.23%) Pv and 79 (7.42%) mixed malaria (Pf + Pv). Thrombocytopenia was observed in 24.6% (262/1064) patients. The risk was greatest in the mixed infections in comparison to monoinfection individually (43.04% [34/79]; mixed vs Pv monoinfection: Odds Ratio [OR] = 1.675 [95% Confidence Interval (CI) 1.029-2.726], p < 0.0366; mixed vs Pf monoinfection: OR=3.911 [95% CI 2.367-6.463], p < 0.0001). Pv monoinfection (31.09% [143/460]) had greater risk compared to Pf monoinfection (16.19% [85/525]; OR = 2.335 [95% CI 1.722-3.167], p < 0.0001). The occurrence of severe thrombocytopenia was also higher in Pv monoinfection (18.18% [26/143]) in comparison to either Pf monoinfection (10.59% [9/85], OR = 1.877 (95% CI 0.834-4.223)) or mixed infection (11.76% [4/34]; OR = 1.667 (95% CI 0.540-5.142) but this association was statistically not significant. Six patients (3 Pv, 2 Pf and 1 mixed) developed severe epistaxis requiring platelet transfusion. There was no relation between parasite density and platelet count as many patients with severe thrombocytopenia had parasite density similar to patients without thrombocytopenia. We found that the association of thrombocytopenia was statistically more significant with P. vivax monoinfection as compared to P. falciparum.


Assuntos
Malária , Plasmodium falciparum/patogenicidade , Plasmodium vivax/patogenicidade , Trombocitopenia , Adulto , Animais , DNA de Protozoário/análise , Testes Diagnósticos de Rotina , Humanos , Índia , Malária/sangue , Malária/complicações , Malária/parasitologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Contagem de Plaquetas , Fatores de Risco , Trombocitopenia/etiologia , Trombocitopenia/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA