Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 41(1): 667-76, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23161686

RESUMO

In the yeast Saccharomyces cerevisiae, the aminoacyl-tRNA synthetases (aaRS) GluRS and MetRS form a complex with the auxiliary protein cofactor Arc1p. The latter binds the N-terminal domains of both synthetases increasing their affinity for the transfer-RNA (tRNA) substrates tRNA(Met) and tRNA(Glu). Until now, structural information was available only on the enzymatic domains of the individual aaRSs but not on their complexes with associated cofactors. We have analysed the yeast Arc1p-complexes in solution by small-angle X-ray scattering (SAXS). The ternary complex of MetRS and GluRS with Arc1p, displays a peculiar extended star-like shape, implying possible flexibility of the complex. We reconstituted in vitro a pentameric complex and demonstrated by electrophoretic mobility shift assay that the complex is active and contains tRNA(Met) and tRNA(Glu), in addition to the three protein partners. SAXS reveals that binding of the tRNAs leads to a dramatic compaction of the pentameric complex compared to the ternary one. A hybrid low-resolution model of the pentameric complex is constructed rationalizing the compaction effect by the interactions of negatively charged tRNA backbones with the positively charged tRNA-binding domains of the synthetases.


Assuntos
Glutamato-tRNA Ligase/química , Metionina tRNA Ligase/química , RNA de Transferência de Ácido Glutâmico/química , RNA de Transferência de Metionina/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Ensaio de Desvio de Mobilidade Eletroforética , Glutamato-tRNA Ligase/metabolismo , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Metionina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
FEBS Lett ; 585(14): 2182-6, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21669201

RESUMO

The CCR4-NOT complex is a deadenylation complex, which plays a major role for mRNA stability. The complex is conserved from yeast to human and consists of nine proteins NOT1-NOT5, CCR4, CAF1, CAF40 and CAF130. We have successfully isolated the complex using a Protein A tag on NOT1, followed by cross-linking on a glycerol gradient. All components of the complex were identified by mass spectrometry. Electron microscopy of negatively stained particles followed by image reconstruction revealed an L-shaped complex with two arms of similar length. The arms form an accessible cavity, which we think could provide an extensive interface for RNA-deadenylation.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Subunidades Proteicas/química , Ribonucleases/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/ultraestrutura , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Humanos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Modelos Moleculares , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/isolamento & purificação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
3.
J Mol Biol ; 374(4): 1077-90, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17976650

RESUMO

Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.


Assuntos
Glutamato-tRNA Ligase/metabolismo , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
Nature ; 449(7162): 616-20, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17873859

RESUMO

Holliday proposed a four-way DNA junction as an intermediate in homologous recombination, and such Holliday junctions have since been identified as a central component in DNA recombination and repair. Phage T4 endonuclease VII (endo VII) was the first enzyme shown to resolve Holliday junctions into duplex DNAs by introducing symmetrical nicks in equivalent strands. Several Holliday junction resolvases have since been characterized, but an atomic structure of a resolvase complex with a Holliday junction remained elusive. Here we report the crystal structure of an inactive T4 endo VII(N62D) complexed with an immobile four-way junction with alternating arm lengths of 10 and 14 base pairs. The junction is a hybrid of the conventional square-planar and stacked-X conformation. Endo VII protrudes into the junction point from the minor groove side, opening it to a 14 A x 32 A parallelogram. This interaction interrupts the coaxial stacking, yet every base pair surrounding the junction remains intact. Additional interactions involve the positively charged protein and DNA phosphate backbones. Each scissile phosphate that is two base pairs from the crossover interacts with a Mg2+ ion in the active site. The similar overall shape and surface charge potential of the Holliday junction resolvases endo VII, RuvC, Ydc2, Hjc and RecU, despite having different folds, active site composition and DNA sequence preference, suggest a conserved binding mode for Holliday junctions.


Assuntos
Bacteriófago T4/enzimologia , DNA Cruciforme/química , DNA Cruciforme/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
5.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1510-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17139087

RESUMO

Eukaryotic aminoacyl-tRNA synthetases (aaRS) frequently contain additional appended domains that are absent from their prokaryotic counterparts which mediate complex formation between eukaryotic aaRS and cofactors of aminoacylation and translation. However, the structural basis of such interactions has remained elusive. The heteromerization domain of yeast glutamyl-tRNA synthetase (GluRS) has been cloned, expressed, purified and crystallized in space group C222(1), with unit-cell parameters a = 52, b = 107, c = 168 A. Phase information was obtained from multiple-wavelength anomalous dispersion with selenomethionine to 2.5 A resolution and the structure, comprising two monomers per asymmetric unit, was determined and refined to 1.9 A resolution. The structure of the interacting domain of its accessory protein Arc1p was determined and refined to 1.9 A resolution in a crystal form containing 20 monomers organized in five tetramers per asymmetric unit (space group C2, unit-cell parameters a = 222, b = 89, c = 127 A, beta = 99.4 degrees ). Both domains adopt a GST-like fold, demonstrating a novel role for this fold as a protein-protein interaction module.


Assuntos
Transporte Ativo do Núcleo Celular , Glutamato-tRNA Ligase/química , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Aminoacilação de RNA de Transferência , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Protein Sci ; 15(10): 2310-7, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963646

RESUMO

As part of a functional analysis of archaeal Sm-related proteins, we have studied the oligomerization behavior of the Sm-2 type protein from the euryarchaeon Archaeoglobus fulgidus using gel filtration chromatography and noncovalent mass spectrometry. Our experiments show that the oligomeric state of the protein depends on the pH and presence of RNA. The protein forms a hexamer at acidic pH in the absence of RNA. The addition of RNA (oligo U10) induces the formation of a heptamer over the whole pH range studied. The stability of both the hexamer and the RNA-bound heptamer increases at lower pH.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Ribonucleoproteínas Nucleares Pequenas/química , Cromatografia em Gel , Dimerização , Concentração de Íons de Hidrogênio , Espectrometria de Massas , RNA/farmacologia
7.
Nucleic Acids Res ; 34(14): 3968-79, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16914447

RESUMO

The yeast aminoacyl-tRNA synthetase (aaRS) complex is formed by the methionyl- and glutamyl-tRNA synthetases (MetRS and GluRS, respectively) and the tRNA aminoacylation cofactor Arc1p. It is considered an evolutionary intermediate between prokaryotic aaRS and the multi- aaRS complex found in higher eukaryotes. While a wealth of structural information is available on the enzymatic domains of single aaRS, insight into complex formation between eukaryotic aaRS and associated protein cofactors is missing. Here we report crystal structures of the binary complexes between the interacting domains of Arc1p and MetRS as well as those of Arc1p and GluRS at resolutions of 2.2 and 2.05 A, respectively. The data provide a complete structural model for ternary complex formation between the interacting domains of MetRS, GluRS and Arc1p. The structures reveal that all three domains adopt a glutathione S-transferase (GST)-like fold and that simultaneous interaction of Arc1p with GluRS and MetRS is mediated by the use of a novel interface in addition to a classical GST dimerization interaction. The results demonstrate a novel role for this fold as a heteromerization domain specific to eukaryotic aaRS, associated proteins and protein translation elongation factors.


Assuntos
Glutamato-tRNA Ligase/química , Metionina tRNA Ligase/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Glutationa Transferase/química , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
8.
Artigo em Inglês | MEDLINE | ID: mdl-16582481

RESUMO

Eukaryotic aminoacyl-tRNA synthetases (aaRSs) must be integrated into an efficient tRNA-export and shuttling machinery. This is reflected by the presence of additional protein-protein interaction domains and a correspondingly higher degree of complex formation in eukaryotic aaRSs. However, the structural basis of interaction between eukaryotic aaRSs and associated protein cofactors has remained elusive. The N-terminal heteromerization domain of the tRNA aminoacylation and export cofactor Arc1p has been cloned from yeast, expressed and purified. Crystals have been obtained belonging to space group C2, with unit-cell parameters a = 222.32, b = 89.46, c = 126.79 angstroms, beta = 99.39 degrees. Calculated Matthews coefficients are compatible with the presence of 10-25 monomers in the asymmetric unit. A complete multiple-wavelength anomalous dispersion data set has been collected from a selenomethionine-substituted crystal at 2.8 angstroms resolution. Preliminary phasing reveals the presence of 20 monomers organized in five tetramers per asymmetric unit.


Assuntos
RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Transporte Biológico , Cristalografia por Raios X , Substâncias Macromoleculares , Modelos Moleculares , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
10.
Artigo em Inglês | MEDLINE | ID: mdl-16511081

RESUMO

The Holliday junction (or four-way junction) is the universal DNA intermediate whose interaction with resolving proteins is one of the major events in the recombinational process. These proteins, called DNA junction-resolving enzymes or resolvases, bind to the junction and catalyse DNA cleavage, promoting the release of two DNA duplexes. SIRV2 Hjc, a viral resolvase infecting a thermophylic archaeon, has been cloned, expressed and purified. Crystals have been obtained in space group C2, with unit-cell parameters a = 147.8, b = 99.9, c = 87.6, beta = 109.46 degrees, and a full data set has been collected at 3.4 A resolution. The self-rotation function indicates the presence of two dimers in the asymmetric unit and a high solvent content (77%). Molecular-replacement trials using known similar resolvase structures have so far been unsuccessful, indicating possible significant structural rearrangements.


Assuntos
Vírus de Archaea/enzimologia , Resolvases de Junção Holliday/química , Resolvases de Junção Holliday/isolamento & purificação , Rudiviridae/química , Sequência de Aminoácidos , Vírus de Archaea/metabolismo , Sequência de Bases , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo , Resolvases de Junção Holliday/genética , Dados de Sequência Molecular , Rudiviridae/genética , Rudiviridae/isolamento & purificação , Rudiviridae/metabolismo , Alinhamento de Sequência , Difração de Raios X
11.
Artigo em Inglês | MEDLINE | ID: mdl-16511128

RESUMO

Holliday junction-resolving enzymes are ubiquitous proteins that play a key role in DNA repair and reorganization by homologous recombination. The Holliday junction-cutting enzyme (Hjc) from the archaeon Archaeoglobus fulgidus is a member of this group. The first Hjc crystals were obtained by conventional sparse-matrix screening. They exhibited an unusually elongated unit cell and their X-ray characterization required special care to avoid spot overlaps along the c* axis. The use of an arc appended to the goniometric head allowed proper orientation of plate-like crystals grown in agarose gel by counter-diffusion. Thus, complete diffraction data were collected at 2.7 A resolution using synchrotron radiation. They belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 37.4, c = 271.8 A.


Assuntos
Archaeoglobus fulgidus/enzimologia , Resolvases de Junção Holliday/química , Sequência de Aminoácidos , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Difusão , Eletroforese em Gel de Ágar , Endodesoxirribonucleases/química , Escherichia coli/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Recombinação Genética , Homologia de Sequência de Aminoácidos , Síncrotrons
12.
Nat Struct Mol Biol ; 11(5): 450-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15077103

RESUMO

Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.


Assuntos
Cátions Bivalentes/metabolismo , Endonucleases/metabolismo , Metais/metabolismo , Sequência de Bases , DNA/metabolismo , Primers do DNA , Hidrólise , Modelos Moleculares , Especificidade por Substrato , Termodinâmica
13.
EMBO Rep ; 4(12): 1150-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14618157

RESUMO

In Saccharomyces cerevisiae, a large complex, known as the Ccr4-Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 A resolution. The domain has the fold of the DnaQ family and represents the first structure of an RNase from the DEDD superfamily. Despite the presence of two non-canonical residues in the active site, the domain displays RNase activity on a broad range of RNA substrates. Site-directed mutagenesis of active-site residues demonstrates the intrinsic ability of the Pop2 RNase D domain to digest RNA. This first structure of a nuclease involved in the 3'-5' deadenylation of mRNA in yeast provides information for the understanding of the mechanism by which the Ccr4-Not complex achieves its functions.


Assuntos
Proteínas/química , Ribonucleases/metabolismo , Leveduras/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Poli A/genética , Polirribonucleotídeos/genética , Proteínas/genética , Ribonucleases/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Alinhamento de Sequência , Fatores de Transcrição , Leveduras/genética
14.
Nucleic Acids Res ; 31(18): 5449-60, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12954782

RESUMO

Escherichia coli phage P1 Cre recombinase catalyzes the site-specific recombination of DNA containing loxP sites. We report here two crystal structures of a wild-type Cre recombinase-loxP synaptic complex corresponding to two distinct reaction states: an initial pre-cleavage complex, trapped using a phosphorothioate modification at the cleavable scissile bond that prevents the recombination reaction, and a 3'-phosphotyrosine protein-DNA intermediate resulting from the first strand cleavage. In contrast to previously determined Cre complexes, both structures contain a full tetrameric complex in the asymmetric unit, unequivocally showing that the anti-parallel arrangement of the loxP sites is an intrinsic property of the Cre-loxP recombination synapse. The conformation of the spacer is different to the one observed for the symmetrized loxS site: a kink next to the scissile phosphate in the top strand of the pre-cleavage complex leads to unstacking of the TpG step and a widening of the minor groove. This side of the spacer is interacting with a 'cleavage-competent' Cre subunit, suggesting that the first cleavage occurs at the ApT step in the top strand. This is further confirmed by the structure of the 3'-phosphotyrosine intermediate, where the DNA is cleaved in the top strands and covalently linked to the 'cleavage-competent' subunits. The cleavage is followed by a movement of the C-terminal part containing the attacking Y324 and the helix N interacting with the 'non-cleaving' subunit. This rearrangement could be responsible for the interconversion of Cre subunits. Our results also suggest that the Cre-induced kink next to the scissile phosphodiester activates the DNA for cleavage at this position and facilitates strand transfer.


Assuntos
DNA/química , Integrases/química , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Virais/química , Sequência de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Dimerização , Integrases/genética , Integrases/metabolismo , Modelos Moleculares , Oligonucleotídeos/química , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Recombinação Genética , Tionucleotídeos/química , Tionucleotídeos/genética , Tionucleotídeos/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Nucleic Acids Res ; 31(14): 4091-8, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12853626

RESUMO

The Hfq protein was discovered in Escherichia coli in the early seventies as a host factor for the Qbeta phage RNA replication. During the last decade, it was shown to be involved in many RNA processing events and remote sequence homology indicated a link to spliceosomal Sm proteins. We report the crystal structure of the E.coli Hfq protein showing that its monomer displays a characteristic Sm-fold and forms a homo-hexamer, in agreement with former biochemical data. Overall, the structure of the E.coli Hfq ring is similar to the one recently described for Staphylococcus aureus. This confirms that bacteria contain a hexameric Sm-like protein which is likely to be an ancient and less specialized form characterized by a relaxed RNA binding specificity. In addition, we identified an Hfq ortholog in the archaeon Methanococcus jannaschii which lacks a classical Sm/Lsm gene. Finally, a detailed structural comparison shows that the Sm-fold is remarkably well conserved in bacteria, Archaea and Eukarya, and represents a universal and modular building unit for oligomeric RNA binding proteins.


Assuntos
Bactérias/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Sequência de Aminoácidos , Autoantígenos , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/química , Evolução Molecular , Fator Proteico 1 do Hospedeiro/química , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Ribonucleoproteínas Nucleares Pequenas/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Centrais de snRNP
16.
J Biol Chem ; 278(2): 1239-47, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12409299

RESUMO

The Sm proteins are conserved in all three domains of life and are always associated with U-rich RNA sequences. Their proposed function is to mediate RNA-RNA interactions. We present here the crystal structures of Pyrococcus abyssi Sm protein (PA-Sm1) and its complex with a uridine heptamer. The overall structure of the protein complex, a heptameric ring with a central cavity, is similar to that proposed for the eukaryotic Sm core complex and found for other archaeal Sm proteins. RNA molecules bind to the protein at two different sites. They interact specifically inside the ring with three highly conserved residues, defining the uridine-binding pocket. In addition, nucleotides also interact on the surface formed by the N-terminal alpha-helix as well as a conserved aromatic residue in beta-strand 2 of the PA-Sm1 protein. The mutation of this conserved aromatic residue shows the importance of this second site for the discrimination between RNA sequences. Given the high structural homology between archaeal and eukaryotic Sm proteins, the PA-Sm1.RNA complex provides a model for how the small nuclear RNA contacts the Sm proteins in the Sm core. In addition, it suggests how Sm proteins might exert their function as modulators of RNA-RNA interactions.


Assuntos
Proteínas Arqueais/química , Pyrococcus/química , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cristalização , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , RNA/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo
17.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 10 Pt 1): 1657-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12351881

RESUMO

Gellified media prevent convection and crystal sedimentation, and provide an attractive growth environment for optimising biological crystals. Agarose gels are particularly easy to use and they are compatible with most of the common crystallization methods. They also offer new possibilities like counter-diffusion techniques. This paper gives a brief overview of their general properties and presents an application of a counter-diffusion setup combining agarose gel and capillaries to the crystallization of proteins and protein / nucleic acid complexes.


Assuntos
Cristalização/métodos , Proteínas/química , Sefarose , Proteínas Arqueais/química , Desulfurococcaceae/química , Difusão , Endodesoxirribonucleases/química , Proteínas de Escherichia coli/química , Géis , Fator Proteico 1 do Hospedeiro/química , Substâncias Macromoleculares , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química
18.
J Mol Biol ; 320(1): 129-42, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12079339

RESUMO

Proteins of largely unknown function related to the Sm proteins present in the core domain of eukaryotic small nuclear ribonucleoprotein particles have recently been detected in Archaea. In contrast to eukaryotes, Archaea contain maximally two distinct Sm-related proteins belonging to different subfamilies, we refer to as Sm1 and Sm2. Here we report the crystal structures of the Sm1- and Sm2-type proteins from the hyperthermophilic euryarchaeon Archaeoglobus fulgidus (AF-Sm1 and AF-Sm2) at a resolution of 2.5 and 1.95 A, respectively. While the AF-Sm1 protein forms a heptameric ring structure similar to that found in other archaeal Sm1-type proteins, the AF-Sm2 protein unexpectedly forms a homo-hexamer in the crystals, and, as is evident from the mass spectrometric analysis, also in solution. Both proteins have essentially the same monomer fold and inter-subunit beta-sheet hydrogen bonding giving rise to a similar overall architecture of the doughnut-shaped six and seven-membered rings. In addition, a conserved uracil-binding pocket identified previously in an AF-Sm1/RNA complex, suggests a common RNA-binding mode for the AF-Sm1 and AF-Sm2 proteins, in line with solution studies showing preferential binding to U-rich oligonucleotides for both proteins. Clear differences are however seen in the charge distribution within the two structures. The rough faces of the rings, i.e. the faces not containing the base binding pockets, have opposite charges in the two structures, being predominantly positive in AF-Sm1 and negative in AF-Sm2. Differences in the ionic interactions between subunits provide an explanation for the distinctly different oligomerisation behaviour of the AF-Sm1 and AF-Sm2 proteins and of Sm1- and Sm2-type proteins in general, as well as the stability of their complexes. Implications for the functions of archaeal Sm proteins are being discussed.


Assuntos
Proteínas Arqueais/química , Archaeoglobus fulgidus/química , Estrutura Quaternária de Proteína , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA