Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroendocrinology ; 113(9): 915-923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907174

RESUMO

INTRODUCTION: Small intestinal neuroendocrine tumours (siNETs) are rare neoplasms which present with low mutational burden and can be subtyped based on copy number variation (CNV). Currently, siNETs can be molecularly classified as having chromosome 18 loss of heterozygosity (18LOH), multiple CNVs (MultiCNV), or no CNVs. 18LOH tumours have better progression-free survival when compared to MultiCNV and NoCNV tumours, however, the mechanism underlying this is unknown, and clinical practice does not currently consider CNV status. METHODS: Here, we use genome-wide tumour DNA methylation (n = 54) and gene expression (n = 20 matched to DNA methylation) to better understand how gene regulation varies by 18LOH status. We then use multiple cell deconvolution methods to analyse how cell composition varies between 18LOH status and determine potential associations with progression-free survival. RESULTS: We identified 27,464 differentially methylated CpG sites and 12 differentially expressed genes between 18LOH and non-18LOH (MultiCNV + NoCNV) siNETs. Although few differentially expressed genes were identified, these genes were highly enriched with the differentially methylated CpG sites compared to the rest of the genome. We identified differences in tumour microenvironment between 18LOH and non-18LOH tumours, including CD14+ infiltration in a subset of non-18LOH tumours which had the poorest clinical outcomes. CONCLUSIONS: We identify a small number of genes which appear to be linked to the 18LOH status of siNETs, and find evidence of potential epigenetic dysregulation of these genes. We also find a potential prognostic marker for worse progression-free outcomes in the form of higher CD14 infiltration in non-18LOH siNETs.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Multiômica , Variações do Número de Cópias de DNA/genética , Cromossomos Humanos Par 18 , Neoplasias Intestinais/genética , Metilação de DNA/genética , Perda de Heterozigosidade/genética , Microambiente Tumoral
2.
Am J Epidemiol ; 188(11): 2021-2030, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504104

RESUMO

Multiple imputation (MI) is a well-established method for dealing with missing data. MI is computationally intensive when imputing missing covariates with high-dimensional outcome data (e.g., DNA methylation data in epigenome-wide association studies (EWAS)), because every outcome variable must be included in the imputation model to avoid biasing associations towards the null. Instead, EWAS analyses are reduced to only complete cases, limiting statistical power and potentially causing bias. We used simulations to compare 5 MI methods for high-dimensional data under 2 missingness mechanisms. All imputation methods had increased power over complete-case (C-C) analyses. Imputing missing values separately for each variable was computationally inefficient, but dividing sites at random into evenly sized bins improved efficiency and gave low bias. Methods imputing solely using subsets of sites identified by the C-C analysis suffered from bias towards the null. However, if these subsets were added into random bins of sites, this bias was reduced. The optimal methods were applied to an EWAS with missingness in covariates. All methods identified additional sites over the C-C analysis, and many of these sites had been replicated in other studies. These methods are also applicable to other high-dimensional data sets, including the rapidly expanding area of "-omics" studies.


Assuntos
Estudos Epidemiológicos , Epigenoma , Estudo de Associação Genômica Ampla , Humanos
3.
Am J Psychiatry ; 170(5): 511-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23511308

RESUMO

OBJECTIVE: Gene expression changes have been reported in the brains of suicide completers. More recently, differences in promoter DNA methylation between suicide completers and comparison subjects in specific genes have been associated with these changes in gene expression patterns, implicating DNA methylation alterations as a plausible component of the pathophysiology of suicide. The authors used a genome-wide approach to investigate the extent of DNA methylation alterations in the brains of suicide completers. METHOD: Promoter DNA methylation was profiled using methylated DNA immunoprecipitation (MeDIP) followed by microarray hybridization in hippocampal tissue from 62 men (46 suicide completers and 16 comparison subjects). The correlation between promoter methylation and expression was investigated by comparing the MeDIP data with gene expression profiles generated through mRNA microarray. Methylation differences between groups were validated on neuronal and nonneuronal DNA fractions isolated by fluorescence-assisted cell sorting. RESULTS: The authors identified 366 promoters that were differentially methylated in suicide completers relative to comparison subjects (273 hypermethylated and 93 hypomethylated). Overall, promoter methylation differences were inversely correlated with gene expression differences. Functional annotation analyses revealed an enrichment of differential methylation in the promoters of genes involved, among other functions, in cognitive processes. Validation was performed on the top genes from this category, and these differences were found to occur mainly in the neuronal cell fraction. CONCLUSIONS: These results suggest broad reprogramming of promoter DNA methylation patterns in the hippocampus of suicide completers. This may help explain gene expression alterations associated with suicide and possibly behavioral changes increasing suicide risk.


Assuntos
Metilação de DNA/genética , Perfilação da Expressão Gênica , Genoma Humano/genética , Hipocampo/metabolismo , Regiões Promotoras Genéticas/genética , Suicídio , Adulto , Estudos de Casos e Controles , Predisposição Genética para Doença , Humanos , Masculino , Neurônios/metabolismo
4.
Arch Gen Psychiatry ; 69(7): 722-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22752237

RESUMO

CONTEXT: Our genome adapts to environmental influences, in part through epigenetic mechanisms, including DNA methylation. Variations in the quality of the early environment are associated with alterations in DNA methylation in rodents, and recent data suggest similar processes in humans in response to early-life adversity. OBJECTIVE: To determine genome-wide DNA methylation alterations induced by early-life trauma. DESIGN: Genome-wide study of promoter methylation in individuals with severe abuse during childhood. PATIENTS, SETTING, AND MAIN OUTCOME MEASURES: Promoter DNA methylation levels were profiled using methylated DNA immunoprecipitation followed by microarray hybridization in hippocampal tissue from 41 French-Canadian men (25 with a history of severe childhood abuse and 16 control subjects). Methylation profiles were compared with corresponding genome-wide gene expression profiles obtained by messenger RNA microarrays. Methylation differences between groups were validated on neuronal and nonneuronal DNA fractions isolated by fluorescence-assisted cell sorting. Functional consequences of site-specific promoter methylation were assessed by luciferase assays. RESULTS: We identified 362 differentially methylated promoters in individuals with a history of abuse compared with controls. Among these promoters, 248 showed hypermethylation and 114 demonstrated hypomethylation. Validation and site-specific quantification of DNA methylation in the 5 most hypermethylated gene promoters indicated that methylation differences occurred mainly in the neuronal cellular fraction. Genes involved in cellular/neuronal plasticity were among the most significantly differentially methylated, and, among these, Alsin (ALS2) was the most significant finding. Methylated ALS2 constructs mimicking the methylation state in samples from abused suicide completers showed decreased promoter transcriptional activity associated with decreased hippocampal expression of ALS2 variants. CONCLUSION: Childhood adversity is associated with epigenetic alterations in the promoters of several genes in hippocampal neurons.


Assuntos
Maus-Tratos Infantis , Epigênese Genética , Hipocampo/metabolismo , Acontecimentos que Mudam a Vida , Neurônios/metabolismo , Adulto , Criança , Metilação de DNA , Feminino , Genoma , Humanos , Masculino , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA