Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(19): 199702, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000425
2.
Phys Rev Lett ; 129(8): 087001, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053705

RESUMO

Dissipative quantum phase transition has been widely believed to occur in a Josephson junction coupled to a resistor despite a lack of concrete experimental evidence. Here, on the basis of both numerical and analytical nonperturbative renormalization group analyses, we reveal breakdown of previous perturbative arguments and defy the common wisdom that the transition always occurs at the quantum resistance R_{Q}=h/(4e^{2}). We find that renormalization group flows in nonperturbative regimes induce nonmonotonic renormalization of the charging energy and lead to a qualitatively different phase diagram, where the insulator phase is strongly suppressed to the deep charge regime (Cooper pair box), while the system is always superconducting in the transmon regime. We identify a previously overlooked dangerously irrelevant term as an origin of the failure of conventional understandings. Our predictions can be tested in recent experiments realizing high-impedance long superconducting waveguides and would provide a solution to the long-standing controversy about the fate of dissipative quantum phase transition in the resistively shunted Josephson junction.

3.
PLoS One ; 10(4): e0124997, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898393

RESUMO

The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter) were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.


Assuntos
Clorófitas/anatomia & histologia , Clorófitas/genética , DNA de Algas/genética , Filogenia , Clorófitas/classificação , Clorófitas/crescimento & desenvolvimento , Ecossistema , Águas Salinas , Alga Marinha , Análise de Sequência de DNA , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA