Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Curr Opin Gastroenterol ; 39(1): 16-22, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504032

RESUMO

PURPOSE OF REVIEW: Fecal microbiome transplants (FMT) show promise in treating various diseases, such as Clostridioides difficile infections. FMT have also demonstrated the capacity to modulate the collection of antibiotic resistance genes (ARGs), termed the resistome, within the gut. The purpose of this review was to critically evaluate the literature regarding the interaction between FMT and the gut resistome and determine whether FMT could be used specifically to reduce ARG carriage in the gut. RECENT FINDINGS: Several studies have demonstrated a decrease in ARG carriage post-FMT administration in various disease states, including recurrent C. difficile infection and after antibiotic usage. However, other studies have reported an expansion of the resistome following FMT. Most studies contained small patient cohorts regardless of the outcome and showed heterogeneity in responses. SUMMARY: Research on resistome modulation by FMT is preliminary, and human studies currently lack consensus regarding benefits and risks. From a safety perspective, screening donor samples for ARGs in addition to antibiotic-resistant organisms may be advisable. Additional studies on the mechanisms underlying heterogeneity between studies and individuals are required before FMT is considered an efficient approach for resistome amelioration.


Assuntos
Clostridioides difficile , Microbiota , Humanos , Fezes , Transplante de Microbiota Fecal , Antibacterianos/farmacologia
2.
Cell ; 185(18): 3307-3328.e19, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987213

RESUMO

Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.


Assuntos
Microbiota , Adoçantes não Calóricos , Adulto , Animais , Aspartame/farmacologia , Glicemia , Humanos , Camundongos , Adoçantes não Calóricos/análise , Adoçantes não Calóricos/farmacologia , Sacarina/farmacologia
3.
Cell ; 185(16): 2879-2898.e24, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931020

RESUMO

Human gut commensals are increasingly suggested to impact non-communicable diseases, such as inflammatory bowel diseases (IBD), yet their targeted suppression remains a daunting unmet challenge. In four geographically distinct IBD cohorts (n = 537), we identify a clade of Klebsiella pneumoniae (Kp) strains, featuring a unique antibiotics resistance and mobilome signature, to be strongly associated with disease exacerbation and severity. Transfer of clinical IBD-associated Kp strains into colitis-prone, germ-free, and colonized mice enhances intestinal inflammation. Stepwise generation of a lytic five-phage combination, targeting sensitive and resistant IBD-associated Kp clade members through distinct mechanisms, enables effective Kp suppression in colitis-prone mice, driving an attenuated inflammation and disease severity. Proof-of-concept assessment of Kp-targeting phages in an artificial human gut and in healthy volunteers demonstrates gastric acid-dependent phage resilience, safety, and viability in the lower gut. Collectively, we demonstrate the feasibility of orally administered combination phage therapy in avoiding resistance, while effectively inhibiting non-communicable disease-contributing pathobionts.


Assuntos
Bacteriófagos , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Colite/terapia , Humanos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Klebsiella pneumoniae , Camundongos
4.
Nat Rev Gastroenterol Hepatol ; 19(9): 557-558, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764720

Assuntos
Bactérias , Humanos
5.
Immunometabolism ; 4(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528135

RESUMO

Replacing sugar with non-nutritive artificial sweeteners (NAS) is a popular dietary choice for the prevention and management of metabolic syndrome and its comorbidities. However, evidence in human trials is conflicted regarding the efficacy of this strategy and whether NAS may counterintuitively promote, rather than prevent, metabolic derangements. The heterogeneity in outcomes may stem in part from microbiome variation between human participants and across research animal vivaria, leading to differential interactions of NAS with gut bacteria. An increasing body of evidence indicates that NAS can alter the mammalian gut microbiome composition, function, and metabolome, which can, in turn, influence host metabolic health. While there is evidence for microbiome-mediated metabolic shifts in response to NAS, the mechanisms by which NAS affect the gut microbiome, and how the microbiome subsequently affects host metabolic processes, remain unclear. In this viewpoint, we discuss data from human and animal trials and provide an overview of the current evidence for NAS-mediated microbial and metabolomic changes. We also review potential mechanisms through which NAS may influence the microbiome and delineate the next steps required to inform public health policies.

7.
Gut Microbes ; 14(1): 2055944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35332832

RESUMO

A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.


Assuntos
Microbioma Gastrointestinal , Microbiota , Antibacterianos/farmacologia , Bactérias/genética , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Genes Bacterianos , Humanos , Metagenômica , Microbiota/genética
8.
Exp Physiol ; 107(4): 257-264, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081663

RESUMO

NEW FINDINGS: What is the topic of this review? The role of the gut microbiome in physiology and how it can be targeted as an effective strategy against two of the most important global medical challenges of our time, namely, metabolic diseases and antibacterial resistance. What advances does it highlight? The critical roles of the microbiome in regulating host physiology and how microbiome analysis is useful for disease stratification to enable informed clinical decisions and develop interventions such as faecal microbiota transplantation, prebiotics and probiotics. Also, the limitations of microbiome modulation, including the potential for probiotics to enhance antimicrobial resistance gene reservoirs, and that currently a 'healthy microbiome' that can be used as a biobank for transplantation is yet to be defined. ABSTRACT: The human gut microbiome is a key factor in the development of metabolic diseases and antimicrobial resistance, which are among the greatest global medical challenges of the 21st century. A recent symposium aimed to highlight state-of-the-art evidence for the role of the gut microbiome in physiology, from childhood to adulthood, and the impact this has on global disease outcomes, ageing and antimicrobial resistance. Although the gut microbiome is established early in life, over time the microbiome and its components including metabolites can become perturbed due to changes such as dietary habits, use of antibiotics and age. As gut microbial metabolites, including short-chain fatty acids, secondary bile acids and trimethylamine-N-oxide, can interact with host receptors including G protein-coupled receptors and can alter host metabolic fluxes, they can significantly affect physiological homoeostasis leading to metabolic diseases. These metabolites can be used to stratify disease phenotypes such as irritable bowel syndrome and adverse events after heart failure and allow informed decisions on clinical management and treatment. While strategies such as use of probiotics, prebiotics and faecal microbiota transplantation have been proposed as interventions to treat and prevent metabolic diseases and antimicrobial resistance, caution must be exercised, first due to the potential of probiotics to enhance antimicrobial resistance gene reservoirs, and second, a 'healthy gut microbiome' that can be used as a biobank for transplantation is yet to be defined. We highlight that sampling other parts of the gastrointestinal tract may produce more representative data than the faecal microbiome alone.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Prebióticos , Probióticos/uso terapêutico
9.
Nature ; 600(7890): 713-719, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880502

RESUMO

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Assuntos
Microbioma Gastrointestinal , Abandono do Hábito de Fumar , Aumento de Peso , Animais , Estudos Transversais , Disbiose/etiologia , Disbiose/metabolismo , Disbiose/patologia , Camundongos , Modelos Animais , Fumar/metabolismo , Fumar/patologia
10.
mSystems ; : e0075621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463567

RESUMO

The human body is home to a dense and diverse population of bacteria, viruses, and eukaryotes, collectively termed the microbiome. Research on host-microbiome interactions continuously demonstrates the importance of this microbial community to human physiology and its involvement in a myriad of diseases. This, in turn, sparks great interest in developing means for beneficially modulating the microbiome, such as fecal microbiome transplantation and probiotics. However, these interventions show mixed efficacy in clinical trials and raise safety concerns. How these exogenous microorganisms interact with the microbiome might underlie the efficacy and safety of these therapeutics, yet the signaling mechanisms mediating microbe-microbe interactions between human-dwelling commensals are poorly understood. In this commentary, we discuss known and putative mechanisms of interactions between commensals in the gut and how they can be harnessed for improving microbiome-targeting therapeutics and facilitating translation of microbiome research to the clinic.

11.
Nat Microbiol ; 6(8): 1043-1054, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34226711

RESUMO

Antimicrobial resistance poses a substantial threat to human health. The gut microbiome is considered a reservoir for potential spread of resistance genes from commensals to pathogens, termed the gut resistome. The impact of probiotics, commonly consumed by many in health or in conjunction with the administration of antibiotics, on the gut resistome is elusive. Reanalysis of gut metagenomes from healthy antibiotics-naïve humans supplemented with an 11-probiotic-strain preparation, allowing direct assessment of the gut resistome in situ along the gastrointestinal (GI) tract, demonstrated that probiotics reduce the number of antibiotic resistance genes exclusively in the gut of colonization-permissive individuals. In mice and in a separate cohort of humans, a course of antibiotics resulted in expansion of the lower GI tract resistome, which was mitigated by autologous faecal microbiome transplantation or during spontaneous recovery. In contrast, probiotics further exacerbated resistome expansion in the GI mucosa by supporting the bloom of strains carrying vancomycin resistance genes but not resistance genes encoded by the probiotic strains. Importantly, the aforementioned effects were not reflected in stool samples, highlighting the importance of direct sampling to analyse the effect of probiotics and antibiotics on the gut resistome. Analysing antibiotic resistance gene content in additional published clinical trials with probiotics further highlighted the importance of person-specific metagenomics-based profiling of the gut resistome using direct sampling. Collectively, these findings suggest opposing person-specific and antibiotic-dependent effects of probiotics on the resistome, whose contribution to the spread of antimicrobial resistance genes along the human GI tract merit further studies.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Estudos de Coortes , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Metagenoma/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto Jovem
12.
Results Probl Cell Differ ; 69: 539-557, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263886

RESUMO

The microbiome field is increasingly raising interest among scientists, clinicians, biopharmaceutical entities, and the general public. Technological advances from the past two decades have enabled the rapid expansion of our ability to characterize the human microbiome in depth, highlighting its previously underappreciated role in contributing to multifactorial diseases including those with unknown etiology. Consequently, there is growing evidence that the microbiome could be utilized in medical diagnosis and patient stratification. Moreover, multiple gut microbes and their metabolic products may be bioactive, thereby serving as future potential microbiome-targeting or -associated therapeutics. Such therapies could include new generation probiotics, prebiotics, fecal microbiota transplantations, postbiotics, and dietary modulators. However, microbiome research has also been associated with significant limitations, technical and conceptual challenges, and, at times, "over-hyped" expectations that microbiome research will produce quick solutions to chronic and mechanistically complex human disorders. Herein, we summarize these challenges and also discuss some of the realistic promises associated with microbiome research and its applicability into clinical application.


Assuntos
Microbiota , Transplante de Microbiota Fecal , Humanos , Prebióticos , Probióticos
14.
Gut Microbes ; 11(1): 77-93, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30951391

RESUMO

Technological developments, including massively parallel DNA sequencing, gnotobiotics, metabolomics, RNA sequencing and culturomics, have markedly propelled the field of microbiome research in recent years. These methodologies can be harnessed to improve our in-depth mechanistic understanding of basic concepts related to consumption of probiotics, including their rules of engagement with the indigenous microbiome and impacts on the human host. We have recently demonstrated that even during probiotic supplementation, resident gut bacteria in a subset of individuals resist the mucosal presence of probiotic strains, limiting their modulatory effect on the microbiome and on the host gut transcriptional landscape. Resistance is partly alleviated by antibiotics treatment, which enables probiotics to interact with the host at the gut mucosal interface, although rather than promoting reconstitution of the indigenous microbiome and of the host transcriptional profile, they inhibit these components from returning to their naïve pre-antibiotic configurations. In this commentary, we discuss our findings in the context of previous and recent works, and suggest that incorporating the state-of-the-art methods currently utilized in microbiome research into the field of probiotics may lead to improved understanding of their mechanisms of activity, as well as their efficacy and long-term safety.


Assuntos
Antibacterianos/efeitos adversos , Microbioma Gastrointestinal , Probióticos/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica
15.
Nat Med ; 25(5): 716-729, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061539

RESUMO

Consumption of over-the-counter probiotics for promotion of health and well-being has increased worldwide in recent years. However, although probiotic use has been greatly popularized among the general public, there are conflicting clinical results for many probiotic strains and formulations. Emerging insights from microbiome research enable an assessment of gut colonization by probiotics, strain-level activity, interactions with the indigenous microbiome, safety and impacts on the host, and allow the association of probiotics with physiological effects and potentially useful medical indications. In this Perspective, we highlight key advances, challenges and limitations in striving toward an unbiased interpretation of the large amount of data regarding over-the-counter probiotics, and propose avenues to improve the quality of evidence, transparency, public awareness and regulation of their use.


Assuntos
Probióticos/efeitos adversos , Probióticos/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Infecções por Clostridium/terapia , Gastroenterite/terapia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Humanos , Imunomodulação , Recém-Nascido , Síndrome do Intestino Irritável/terapia , Sepse Neonatal/terapia , Probióticos/normas , Infecções Respiratórias/terapia , Segurança , Resultado do Tratamento
16.
Nat Rev Gastroenterol Hepatol ; 16(1): 35-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30262901

RESUMO

Since the renaissance of microbiome research in the past decade, much insight has accumulated in comprehending forces shaping the architecture and functionality of resident microorganisms in the human gut. Of the multiple host-endogenous and host-exogenous factors involved, diet emerges as a pivotal determinant of gut microbiota community structure and function. By introducing dietary signals into the nexus between the host and its microbiota, nutrition sustains homeostasis or contributes to disease susceptibility. Herein, we summarize major concepts related to the effect of dietary constituents on the gut microbiota, highlighting chief principles in the diet-microbiota crosstalk. We then discuss the health benefits and detrimental consequences that the interactions between dietary and microbial factors elicit in the host. Finally, we present the promises and challenges that arise when seeking to incorporate microbiome data in dietary planning and portray the anticipated revolution that the field of nutrition is facing upon adopting these novel concepts.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Animais , Homeostase , Humanos
17.
Cell ; 174(6): 1388-1405.e21, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193112

RESUMO

Empiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome. A sequential invasive multi-omics measurement at baseline and during consumption of an 11-strain probiotic combination or placebo demonstrated that probiotics remain viable upon gastrointestinal passage. In colonized, but not germ-free mice, probiotics encountered a marked mucosal colonization resistance. In contrast, humans featured person-, region- and strain-specific mucosal colonization patterns, hallmarked by predictive baseline host and microbiome features, but indistinguishable by probiotics presence in stool. Consequently, probiotics induced a transient, individualized impact on mucosal community structure and gut transcriptome. Collectively, empiric probiotics supplementation may be limited in universally and persistently impacting the gut mucosa, meriting development of new personalized probiotic approaches.


Assuntos
Microbioma Gastrointestinal , Probióticos/administração & dosagem , Adolescente , Adulto , Idoso , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Fezes/microbiologia , Feminino , Mucosa Gástrica/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Efeito Placebo , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Transcriptoma , Adulto Jovem
18.
Cell ; 174(6): 1406-1423.e16, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193113

RESUMO

Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Adolescente , Adulto , Idoso , Animais , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactococcus/genética , Lactococcus/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Adulto Jovem
19.
Nat Microbiol ; 3(2): 132-140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358683

RESUMO

The development of innovative high-throughput genomics and metabolomics technologies has considerably expanded our understanding of the commensal microorganisms residing within the human body, collectively termed the microbiota. In recent years, the microbiota has been reported to have important roles in multiple aspects of human health, pathology and host-pathogen interactions. One function of commensals that has attracted particular interest is their role in protection against pathogens and pathobionts, a concept known as colonization resistance. However, pathogens are also able to sense and exploit the microbiota during infection. Therefore, obtaining a holistic understanding of colonization resistance mechanisms is essential for the development of microbiome-based and microbiome-targeting therapies for humans and animals. Achieving this is dependent on utilizing physiologically relevant animal models. In this Perspective, we discuss the colonization resistance functions of the gut microbiota and sieve through the advantages and limitations of murine models commonly used to study such mechanisms within the context of enteric bacterial infection.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Animais , Antibacterianos/uso terapêutico , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/patogenicidade , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Vida Livre de Germes , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Modelos Animais , Simbiose
20.
Cell Metab ; 25(6): 1243-1253.e5, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591632

RESUMO

Bread is consumed daily by billions of people, yet evidence regarding its clinical effects is contradicting. Here, we performed a randomized crossover trial of two 1-week-long dietary interventions comprising consumption of either traditionally made sourdough-leavened whole-grain bread or industrially made white bread. We found no significant differential effects of bread type on multiple clinical parameters. The gut microbiota composition remained person specific throughout this trial and was generally resilient to the intervention. We demonstrate statistically significant interpersonal variability in the glycemic response to different bread types, suggesting that the lack of phenotypic difference between the bread types stems from a person-specific effect. We further show that the type of bread that induces the lower glycemic response in each person can be predicted based solely on microbiome data prior to the intervention. Together, we present marked personalization in both bread metabolism and the gut microbiome, suggesting that understanding dietary effects requires integration of person-specific factors.


Assuntos
Glicemia/metabolismo , Pão , Microbioma Gastrointestinal/fisiologia , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA