Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065080

RESUMO

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Diferenciação Celular , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Células-Tronco , Humanos , Animais , Camundongos , Linhagem da Célula
2.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065081

RESUMO

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Assuntos
Fibroblastos Associados a Câncer , Humanos , Apoptose , Organoides , Transdução de Sinais , Análise de Célula Única , Avaliação Pré-Clínica de Medicamentos , Algoritmos , Células-Tronco
3.
Blood Adv ; 7(9): 1725-1738, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36453632

RESUMO

We recently described a low-affinity second-generation CD19 chimeric antigen receptor (CAR) CAT that showed enhanced expansion, cytotoxicity, and antitumor efficacy compared with the high-affinity (FMC63-based) CAR used in tisagenlecleucel, in preclinical models. Furthermore, CAT demonstrated an excellent toxicity profile, enhanced in vivo expansion, and long-term persistence in a phase 1 clinical study. To understand the molecular mechanisms behind these properties of CAT CAR T cells, we performed a systematic in vitro characterization of the transcriptomic (RNA sequencing) and protein (cytometry by time of flight) changes occurring in T cells expressing low-affinity vs high-affinity CD19 CARs following stimulation with CD19-expressing cells. Our results show that CAT CAR T cells exhibit enhanced activation to CD19 stimulation and a distinct transcriptomic and protein profile, with increased activation and cytokine polyfunctionality compared with FMC63 CAR T cells. We demonstrate that the enhanced functionality of low-affinity CAT CAR T cells is a consequence of an antigen-dependent priming induced by residual CD19-expressing B cells present in the manufacture.


Assuntos
Citocinas , Receptores de Antígenos Quiméricos , Citocinas/metabolismo , Imunoterapia Adotiva/métodos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD19
4.
STAR Protoc ; 3(1): 101174, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199038

RESUMO

Here, we present a comprehensive protocol for the generation and functional characterization of chimeric antigen receptor (CAR) T cells and their products by mass cytometry in a reproducible and scalable manner. We describe the production of CAR T cells from human peripheral blood mononuclear cells. We then detail a three-step staining protocol with metal-labeled antibodies and the subsequent mass cytometry analysis. This protocol allows simultaneous characterization of CAR T cell intracellular signaling, activation, proliferation, cytokine production, and phenotype in a single assay.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Anticorpos , Humanos
5.
Nat Protoc ; 16(10): 4897-4918, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497385

RESUMO

Organoids are biomimetic tissue models comprising multiple cell types and cell states. Post-translational modification (PTM) signaling networks control cellular phenotypes and are frequently dysregulated in diseases such as cancer. Although signaling networks vary across cell types, there are limited techniques to study cell type-specific PTMs in heterocellular organoids. Here, we present a multiplexed mass cytometry (MC) protocol for single-cell analysis of PTM signaling and cell states in organoids and organoids co-cultured with fibroblasts and leukocytes. We describe how thiol-reactive organoid barcoding in situ (TOBis) enables 35-plex and 126-plex single-cell comparison of organoid cultures and provide a cytometry by time of flight (CyTOF) signaling analysis pipeline (CyGNAL) for computing cell type-specific PTM signaling networks. The TOBis MC protocol takes ~3 d from organoid fixation to data acquisition and can generate single-cell data for >40 antibodies from millions of cells across 126 organoid cultures in a single MC run.


Assuntos
Organoides , Análise de Célula Única , Diferenciação Celular , Fibroblastos , Humanos
6.
Nat Cell Biol ; 22(3): 289-296, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094692

RESUMO

The process of metastasis is complex1. In breast cancer, there are frequently long time intervals between cells leaving the primary tumour and growth of overt metastases2,3. Reasons for disease indolence and subsequent transition back to aggressive growth include interactions with myeloid and fibroblastic cells in the tumour microenvironment and ongoing immune surveillance4-6. However, the signals that cause actively growing cells to enter an indolent state, thereby enabling them to survive for extended periods of time, are not well understood. Here we reveal how the behaviour of indolent breast cancer cells in the lung is determined by their interactions with alveolar epithelial cells, in particular alveolar type 1 cells. This promotes the formation of fibronectin fibrils by indolent cells that drive integrin-dependent pro-survival signals. Combined in vivo RNA sequencing and drop-out screening identified secreted frizzled-related protein 2 (SFRP2) as a key mediator of this interaction. Sfrp2 is induced in breast cancer cells by signals from lung epithelial cells and promotes fibronectin fibril formation and survival, whereas blockade of Sfrp2 expression reduces the burden of indolent disease.


Assuntos
Células Epiteliais Alveolares/fisiologia , Neoplasias da Mama/patologia , Proteínas de Membrana/fisiologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Metástase Neoplásica , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Transdução de Sinais
7.
Nat Methods ; 17(3): 335-342, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066960

RESUMO

Despite the widespread adoption of organoids as biomimetic tissue models, methods to comprehensively analyze cell-type-specific post-translational modification (PTM) signaling networks in organoids are absent. Here, we report multivariate single-cell analysis of such networks in organoids and organoid cocultures. Simultaneous analysis by mass cytometry of 28 PTMs in >1 million single cells derived from small intestinal organoids reveals cell-type- and cell-state-specific signaling networks in stem, Paneth, enteroendocrine, tuft and goblet cells, as well as enterocytes. Integrating single-cell PTM analysis with thiol-reactive organoid barcoding in situ (TOBis) enables high-throughput comparison of signaling networks between organoid cultures. Cell-type-specific PTM analysis of colorectal cancer organoid cocultures reveals that shApc, KrasG12D and Trp53R172H cell-autonomously mimic signaling states normally induced by stromal fibroblasts and macrophages. These results demonstrate how standard mass cytometry workflows can be modified to perform high-throughput multivariate cell-type-specific signaling analysis of healthy and cancerous organoids.


Assuntos
Biomimética , Neoplasias Colorretais/patologia , Regulação da Expressão Gênica , Intestino Delgado/citologia , Organoides/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Técnicas de Cocultura/métodos , Neoplasias Colorretais/metabolismo , Citofotometria/métodos , Enterócitos/citologia , Células Enteroendócrinas/citologia , Feminino , Fibroblastos/citologia , Células Caliciformes/citologia , Humanos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Celulas de Paneth/citologia , Análise de Célula Única/métodos , Compostos de Sulfidrila/química , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA