Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(50): 19228-19239, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30327424

RESUMO

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), ClpB forms a hexameric ring structure, with each protomer containing two AAA+ modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring. The MD is subdivided into two oppositely directed short coiled-coils, called motif-1 and motif-2. The MD represses the ATPase activity of ClpB, and this repression is reversed by the binding of DnaK to motif-2. To better understand how the MD regulates ClpB activity, here we investigated the roles of motif-1 in ClpB from Thermus thermophilus (TClpB). Using systematic alanine substitution of the conserved charged residues, we identified functionally important residues in motif-1, and using a photoreactive cross-linker and LC-MS/MS analysis, we further explored potential interacting residues. Moreover, we constructed TClpB mutants in which functionally important residues in motif-1 and in other candidate regions were substituted by oppositely charged residues. These analyses revealed that the intra-subunit pair Glu-401-Arg-532 and the inter-subunit pair Asp-404-Arg-180 are functionally important, electrostatically interacting pairs. Considering these structural findings, we conclude that the Glu-401-Arg-532 interaction shifts the equilibrium of the MD conformation to stabilize the activated form and that the Arg-180-Asp-404 interaction contributes to intersubunit signal transduction, essential for ClpB chaperone activities.


Assuntos
Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Eletricidade Estática , Thermus thermophilus/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Endopeptidase Clp/genética , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA