Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Clin Invest ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39404231

RESUMO

Females have an increased prevalence of many Th17 cell-mediated diseases, including asthma. Androgen signaling decreases Th17 cell-mediated airway inflammation, and Th17 cells rely on glutaminolysis. However, it remains unclear whether androgen receptor (AR) signaling modifies glutamine metabolism to suppress Th17 cell-mediated airway inflammation. We show that Th17 cells from male humans and mice had decreased glutaminolysis compared to females, and that AR signaling attenuated Th17 cell mitochondrial respiration and glutaminolysis in mice. Using allergen-induced airway inflammation mouse models, we determined females had a selective reliance upon glutaminolysis for Th17-mediated airway inflammation, and AR signaling attenuated glutamine uptake in CD4+ T cells by reducing expression of glutamine transporters. Minimal reliance on glutamine uptake in male Th17 cells compared to female Th17 cells was also found in circulating T cells from patients with asthma. AR signaling thus attenuates glutaminolysis, demonstrating sex-specific metabolic regulation of Th17 cells with implications for Th17 or glutaminolysis targeted therapeutics.

2.
Sci Immunol ; 9(99): eadp3475, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303018

RESUMO

Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.


Assuntos
Dano ao DNA , Febre , Inflamação , Mitocôndrias , Animais , Dano ao DNA/imunologia , Camundongos , Inflamação/imunologia , Febre/imunologia , Humanos , Mitocôndrias/imunologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Feminino , Masculino
3.
Sci Immunol ; 9(98): eadh0368, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151020

RESUMO

Inborn errors of metabolism (IEMs) and immunity (IEIs) are Mendelian diseases in which complex phenotypes and patient rarity have limited clinical understanding. Whereas few genes have been annotated as contributing to both IEMs and IEIs, immunometabolic demands suggested greater functional overlap. Here, CRISPR screens tested IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable previously unappreciated crossover. Analysis of IEMs showed that N-linked glycosylation and the hexosamine pathway enzyme Gfpt1 are critical for T cell expansion and function. Further, T helper (TH1) cells synthesized uridine diphosphate N-acetylglucosamine more rapidly and were more impaired by Gfpt1 deficiency than TH17 cells. Screening IEI genes found that Bcl11b promotes the CD4 T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. Thus, a high degree of functional overlap exists between IEM and IEI genes, and immunometabolic mechanisms may underlie a previously underappreciated intersection of these disorders.


Assuntos
Erros Inatos do Metabolismo , Animais , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
4.
bioRxiv ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39026793

RESUMO

Lipid metabolism is fundamental to CD4+ T cell metabolism yet remains poorly understood across subsets. Therefore, we performed targeted in vivo CRISPR/Cas9 screens to identify lipid-associated genes essential for T cell subset functions. These screens established mitochondrial fatty acid synthesis (mtFAS) genes Mecr, Mcat and Oxsm as highly impactful. Of these, the inborn error of metabolism gene Mecr was most dynamically regulated. Effector and memory T cells were reduced in Mecrfl/fl; Cd4cre mice, and MECR was required for activated CD4+ T cells to efficiently proliferate, differentiate, and survive. Mecr-deficient T cells also had decreased mitochondrial respiration, reduced TCA intermediates, and accumulated intracellular iron, which contributed to cell death and sensitivity to ferroptosis. Importantly, Mecr-deficient T cells exhibited fitness disadvantages in inflammatory, tumor, and infection models. mtFAS and MECR thus play important roles in activated T cells and may provide targets to modulate immune functions in inflammatory diseases. The immunological state of MECR- and mtFAS-deficient patients may also be compromised.

5.
Cureus ; 16(4): e57642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707085

RESUMO

Background This study aimed to determine if the cerebrospinal fluid (CSF) cell count is useful for predicting the infection severity or prognosis in Japanese adults with community-acquired bacterial meningitis. Methodology This study retrospectively evaluated the prognosis of patients diagnosed with community-acquired bacterial meningitis at our hospital from January 2004 to December 2021 using the modified Rankin scale (mRs) (Showa General Hospital; N = 39). Patients were classified into the following two groups: (i) favorable (mRs: 0-3) and (ii) unfavorable (mRs: 4-6). Eight factors were selected and compared with outcomes, and then two factors were evaluated from those, and a multivariate logistic regression was used to determine the significant variables. Results CSF cell count was observed to be associated with poor prognoses (odds ratio (OR) = 0.86, 95% confidence interval (CI) = 0.99995-0.99999, p = 0.0012). Glasgow coma scale (GCS) score on admission was also observed to be associated with poor prognoses (OR = 0.93, 95% CI = 0.89145-0.97290, p = 0.0029). Conclusions Low CSF cell count and low GCS on admission were observed as risk factors for poor prognoses in patients with bacterial meningitis.

6.
Cogn Affect Behav Neurosci ; 24(3): 469-490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291308

RESUMO

Psychological research on human motivation repeatedly observed that approach goals (i.e., goals to attain success) increase task enjoyment and intrinsic motivation more strongly than avoidance goals (i.e., goals to avoid failure). The present study sought to address how the reward network in the brain-including the striatum and ventromedial prefrontal cortex-is involved when individuals engage in the same task with a focus on approach or avoidance goals. Participants reported stronger positive emotions when they focused on approach goals, but stronger anxiety and disappointment when they focused on avoidance goals. The fMRI analyses revealed that the reward network in the brain showed similar levels of activity to cues predictive of approach and avoidance goals. In contrast, the two goal states were associated with different patterns of activity in the visual cortex, hippocampus, and cerebellum during success and failure outcomes. Representation similarity analysis further revealed shared and different representations within the striatum and vmPFC between the approach and avoidance goal states, suggesting both the similarity and uniqueness of the mechanisms behind the two goal states. In addition, the distinct patterns of activation in the striatum were associated with distinct subjective experiences participants reported between the approach and the avoidance conditions. These results suggest the importance of examining the pattern of striatal activity in understanding the mechanisms behind different motivational states in humans.


Assuntos
Ansiedade , Mapeamento Encefálico , Encéfalo , Objetivos , Imageamento por Ressonância Magnética , Motivação , Recompensa , Humanos , Masculino , Feminino , Motivação/fisiologia , Adulto Jovem , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Aprendizagem da Esquiva/fisiologia , Felicidade , Adolescente
8.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745344

RESUMO

Amino acid (AA) uptake is essential for T cell metabolism and function, but how tissue sites and inflammation affect CD4+ T cell subset requirements for specific AA remains uncertain. Here we tested CD4+ T cell AA demands with in vitro and multiple in vivo CRISPR screens and identify subset- and tissue-specific dependencies on the AA transporter SLC38A1 (SNAT1). While dispensable for T cell persistence and expansion over time in vitro and in vivo lung inflammation, SLC38A1 was critical for Th1 but not Th17 cell-driven Experimental Autoimmune Encephalomyelitis (EAE) and contributed to Th1 cell-driven inflammatory bowel disease. SLC38A1 deficiency reduced mTORC1 signaling and glycolytic activity in Th1 cells, in part by reducing intracellular glutamine and disrupting hexosamine biosynthesis and redox regulation. Similarly, pharmacological inhibition of SLC38 transporters delayed EAE but did not affect lung inflammation. Subset- and tissue-specific dependencies of CD4+ T cells on AA transporters may guide selective immunotherapies.

9.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747715

RESUMO

Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders. HIGHLIGHTS: Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.

10.
Sci Immunol ; 8(79): eabq0178, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638190

RESUMO

T cells in systemic lupus erythematosus (SLE) exhibit multiple metabolic abnormalities. Excess iron can impair mitochondria and may contribute to SLE. To gain insights into this potential role of iron in SLE, we performed a CRISPR screen of iron handling genes on T cells. Transferrin receptor (CD71) was identified as differentially critical for TH1 and inhibitory for induced regulatory T cells (iTregs). Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Cell surface CD71 was enhanced in SLE-prone T cells by increased endosomal recycling. Blocking CD71 reduced intracellular iron and mTORC1 signaling, which inhibited TH1 and TH17 cells yet enhanced iTregs. In vivo treatment reduced kidney pathology and increased CD4 T cell production of IL-10 in SLE-prone mice. Disease severity correlated with CD71 expression on TH17 cells from patients with SLE, and blocking CD71 in vitro enhanced IL-10 secretion. T cell iron uptake via CD71 thus contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores da Transferrina , Linfócitos T Reguladores , Animais , Camundongos , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Receptores da Transferrina/metabolismo , Linfócitos T Reguladores/metabolismo , Humanos
11.
Cogn Affect Behav Neurosci ; 23(1): 30-41, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36451027

RESUMO

Economic and decision-making theories suppose that people would disengage from a task with near zero success probability, because this implicates little normative utility values. However, humans often are motivated for an extremely challenging task, even without any extrinsic incentives. The current study aimed to address the nature of this challenge-based motivation and its neural correlates. We found that, when participants played a skill-based task without extrinsic incentives, their task enjoyment increased as the chance of success decreased, even if the task was almost impossible to achieve. However, such challenge-based motivation was not observed when participants were rewarded for the task or the reward was determined in a probabilistic manner. The activation in the ventral striatum/pallidum tracked the pattern of task enjoyment. These results suggest that people are intrinsically motivated to challenge a nearly impossible task but only when the task requires certain skills and extrinsic rewards are unavailable.


Assuntos
Prazer , Estriado Ventral , Humanos , Recompensa , Motivação , Estriado Ventral/diagnóstico por imagem , Felicidade , Imageamento por Ressonância Magnética
12.
Immunohorizons ; 6(12): 837-850, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547387

RESUMO

Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.


Assuntos
ATP Citrato (pro-S)-Liase , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mielopoese , Animais , Camundongos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , Cromatina/metabolismo , Mielopoese/genética
13.
Nature ; 611(7937): 818-826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36385524

RESUMO

Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Miocardite , Miosinas Ventriculares , Animais , Camundongos , Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/deficiência , Antígeno CTLA-4/genética , Imunoterapia/efeitos adversos , Miocardite/induzido quimicamente , Miocardite/etiologia , Miocardite/mortalidade , Miocardite/patologia , Miosinas Ventriculares/imunologia
14.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
15.
Brain ; 144(11): 3340-3354, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34849596

RESUMO

During a verbal conversation, our brain moves through a series of complex linguistic processing stages: sound decoding, semantic comprehension, retrieval of semantically coherent words, and overt production of speech outputs. Each process is thought to be supported by a network consisting of local and long-range connections bridging between major cortical areas. Both temporal and extratemporal lobe regions have functional compartments responsible for distinct language domains, including the perception and production of phonological and semantic components. This study provides quantitative evidence of how directly connected inter-lobar neocortical networks support distinct stages of linguistic processing across brain development. Novel six-dimensional tractography was used to intuitively visualize the strength and temporal dynamics of direct inter-lobar effective connectivity between cortical areas activated during each linguistic processing stage. We analysed 3401 non-epileptic intracranial electrode sites from 37 children with focal epilepsy (aged 5-20 years) who underwent extra-operative electrocorticography recording. Principal component analysis of auditory naming-related high-gamma modulations determined the relative involvement of each cortical area during each linguistic processing stage. To quantify direct effective connectivity, we delivered single-pulse electrical stimulation to 488 temporal and 1581 extratemporal lobe sites and measured the early cortico-cortical spectral responses at distant electrodes. Mixed model analyses determined the effects of naming-related high-gamma co-augmentation between connecting regions, age, and cerebral hemisphere on the strength of effective connectivity independent of epilepsy-related factors. Direct effective connectivity was strongest between extratemporal and temporal lobe site pairs, which were simultaneously activated between sentence offset and verbal response onset (i.e. response preparation period); this connectivity was approximately twice more robust than that with temporal lobe sites activated during stimulus listening or overt response. Conversely, extratemporal lobe sites activated during overt response were equally connected with temporal lobe language sites. Older age was associated with increased strength of inter-lobar effective connectivity especially between those activated during response preparation. The arcuate fasciculus supported approximately two-thirds of the direct effective connectivity pathways from temporal to extratemporal auditory language-related areas but only up to half of those in the opposite direction. The uncinate fasciculus consisted of <2% of those in the temporal-to-extratemporal direction and up to 6% of those in the opposite direction. We, for the first time, provided an atlas which quantifies and animates the strength, dynamics, and direction specificity of inter-lobar neural communications between language areas via the white matter pathways. Language-related effective connectivity may be strengthened in an age-dependent manner even after the age of 5.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Idioma , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adolescente , Atlas como Assunto , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Eletrocorticografia , Feminino , Humanos , Masculino , Modelos Neurológicos , Adulto Jovem
16.
Nat Rev Immunol ; 21(10): 637-652, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33859379

RESUMO

The metabolic charts memorized in early biochemistry courses, and then later forgotten, have come back to haunt many immunologists with new recognition of the importance of these pathways. Metabolites and the activity of metabolic pathways drive energy production, macromolecule synthesis, intracellular signalling, post-translational modifications and cell survival. Immunologists who identify a metabolic phenotype in their system are often left wondering where to begin and what does it mean? Here, we provide a framework for navigating and selecting the appropriate biochemical techniques to explore immunometabolism. We offer recommendations for initial approaches to develop and test metabolic hypotheses and how to avoid common mistakes. We then discuss how to take things to the next level with metabolomic approaches, such as isotope tracing and genetic approaches. By proposing strategies and evaluating the strengths and weaknesses of different methodologies, we aim to provide insight, note important considerations and discuss ways to avoid common misconceptions. Furthermore, we highlight recent studies demonstrating the power of these metabolic approaches to uncover the role of metabolism in immunology. By following the framework in this Review, neophytes and seasoned investigators alike can venture into the emerging realm of cellular metabolism and immunity with confidence and rigour.


Assuntos
Imunidade , Redes e Vias Metabólicas , Animais , Glicólise , Humanos , Metabolômica , Mitocôndrias/metabolismo
17.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
18.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806963

RESUMO

Predicting response to ICI therapy among patients with renal cell carcinoma (RCC) has been uniquely challenging. We analyzed patient characteristics and clinical correlates from a retrospective single-site cohort of advanced RCC patients receiving anti-PD-1/PD-L1 monotherapy (N = 97), as well as molecular parameters in a subset of patients, including multiplexed immunofluorescence (mIF), whole exome sequencing (WES), T cell receptor (TCR) sequencing, and RNA sequencing (RNA-seq). Clinical factors such as the development of immune-related adverse events (odds ratio (OR) = 2.50, 95% confidence interval (CI) = 1.05-5.91) and immunological prognostic parameters, including a higher percentage of circulating lymphocytes (23.4% vs. 17.4%, p = 0.0015) and a lower percentage of circulating neutrophils (61.8% vs. 68.5%, p = 0.0045), correlated with response. Previously identified gene expression signatures representing pathways of angiogenesis, myeloid inflammation, T effector presence, and clear cell signatures also correlated with response. High PD-L1 expression (>10% cells) as well as low TCR diversity (≤644 clonotypes) were associated with improved progression-free survival (PFS). We corroborate previously published findings and provide preliminary evidence of T cell clonality impacting the outcome of RCC patients. To further biomarker development in RCC, future studies will benefit from integrated analysis of multiple molecular platforms and prospective validation.

19.
Sci Rep ; 10(1): 11987, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686761

RESUMO

People occasionally use filler phrases or pauses, such as "uh", "um", or "y'know," that interrupt the flow of a sentence and fill silent moments between ordinary (non-filler) phrases. It remains unknown which brain networks are engaged during the utterance of fillers. We addressed this question by quantifying event-related cortical high gamma activity at 70-110 Hz. During extraoperative electrocorticography recordings performed as part of the presurgical evaluation, patients with drug-resistant focal epilepsy were instructed to overtly explain, in a sentence, 'what is in the image (subject)', 'doing what (verb)', 'where (location)', and 'when (time)'. Time-frequency analysis revealed that the utterance of fillers, compared to that of ordinary words, was associated with a greater magnitude of high gamma augmentation in association and visual cortex of either hemisphere. Our preliminary results raise the hypothesis that filler utterance would often occur when large-scale networks across the association and visual cortex are engaged in cognitive processing, including lexical retrieval as well as verbal working memory and visual scene scanning.


Assuntos
Encéfalo/fisiologia , Comunicação , Adolescente , Comportamento , Eletrodos , Feminino , Ritmo Gama/fisiologia , Humanos , Masculino , Modelos Neurológicos , Análise e Desempenho de Tarefas , Fatores de Tempo
20.
Neuroimage ; 215: 116763, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32294537

RESUMO

INTRODUCTION: Cortico-cortical evoked potentials (CCEPs) are utilized to identify effective networks in the human brain. Following single-pulse electrical stimulation of cortical electrodes, evoked responses are recorded from distant cortical areas. A negative deflection (N1) which occurs 10-50 â€‹ms post-stimulus is considered to be a marker for direct cortico-cortical connectivity. However, with CCEPs alone it is not possible to observe the white matter pathways that conduct the signal or accurately predict N1 amplitude and latency at downstream recoding sites. Here, we develop a new approach, termed "dynamic tractography," which integrates CCEP data with diffusion-weighted imaging (DWI) data collected from the same patients. This innovative method allows greater insights into cortico-cortical networks than provided by each method alone and may improve the understanding of large-scale networks that support cognitive functions. The dynamic tractography model produces several fundamental hypotheses which we investigate: 1) DWI-based pathlength predicts N1 latency; 2) DWI-based pathlength negatively predicts N1 voltage; and 3) fractional anisotropy (FA) along the white matter path predicts N1 propagation velocity. METHODS: Twenty-three neurosurgical patients with drug-resistant epilepsy underwent both extraoperative CCEP recordings and preoperative DWI scans. Subdural grids of 3 â€‹mm diameter electrodes were used for stimulation and recording, with 98-128 eligible electrodes per patient. CCEPs were elicited by trains of 1 â€‹Hz stimuli with an intensity of 5 â€‹mA and recorded at a sample rate of 1 â€‹kHz. N1 peak and latency were defined as the maximum of a negative deflection within 10-50 â€‹ms post-stimulus with a z-score > 5 relative to baseline. Electrodes and DWI were coregistered to construct electrode connectomes for white matter quantification. RESULTS: Clinical variables (age, sex, number of anti-epileptic drugs, handedness, and stimulated hemisphere) did not correlate with the key outcome measures (N1 peak amplitude, latency, velocity, or DWI pathlength). All subjects and electrodes were therefore pooled into a group-level analysis to determine overall patterns. As hypothesized, DWI path length positively predicted N1 latency (R2 â€‹= â€‹0.81, ߠ​= â€‹1.51, p â€‹= â€‹4.76e-16) and negatively predicted N1 voltage (R2 â€‹= â€‹0.79, ߠ​= â€‹-0.094, p â€‹= â€‹9.30e-15), while FA predicted N1 propagation velocity (R2 â€‹= â€‹0.35, ߠ​= â€‹48.0, p â€‹= â€‹0.001). CONCLUSION: We have demonstrated that the strength and timing of the CCEP N1 is dependent on the properties of the underlying white matter network. Integrated CCEP and DWI visualization allows robust localization of intact axonal pathways which effectively interconnect eloquent cortex.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Eletroencefalografia/métodos , Potenciais Evocados , Substância Branca/diagnóstico por imagem , Substância Branca/fisiopatologia , Adolescente , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA