Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JMIR Form Res ; 8: e48690, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363594

RESUMO

BACKGROUND: Measurement of sodium intake in hospitalized patients is critical for their care. In this study, artificial intelligence (AI)-based imaging was performed to determine sodium intake in these patients. OBJECTIVE: The applicability of a diet management system was evaluated using AI-based imaging to assess the sodium content of diets prescribed for hospitalized patients. METHODS: Based on the information on the already investigated nutrients and quantity of food, consumed sodium was analyzed through photographs obtained before and after a meal. We used a hybrid model that first leveraged the capabilities of the You Only Look Once, version 4 (YOLOv4) architecture for the detection of food and dish areas in images. Following this initial detection, 2 distinct approaches were adopted for further classification: a custom ResNet-101 model and a hyperspectral imaging-based technique. These methodologies focused on accurate classification and estimation of the food quantity and sodium amount, respectively. The 24-hour urine sodium (UNa) value was measured as a reference for evaluating the sodium intake. RESULTS: Results were analyzed using complete data from 25 participants out of the total 54 enrolled individuals. The median sodium intake calculated by the AI algorithm (AI-Na) was determined to be 2022.7 mg per day/person (adjusted by administered fluids). A significant correlation was observed between AI-Na and 24-hour UNa, while there was a notable disparity between them. A regression analysis, considering patient characteristics (eg, gender, age, renal function, the use of diuretics, and administered fluids) yielded a formula accounting for the interaction between AI-Na and 24-hour UNa. Consequently, it was concluded that AI-Na holds clinical significance in estimating salt intake for hospitalized patients using images without the need for 24-hour UNa measurements. The degree of correlation between AI-Na and 24-hour UNa was found to vary depending on the use of diuretics. CONCLUSIONS: This study highlights the potential of AI-based imaging for determining sodium intake in hospitalized patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA