Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genome Biol ; 24(1): 172, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480112

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by mutations in the arylsulfatase A gene (ARSA) and categorized into three subtypes according to age of onset. The functional effect of most ARSA mutants remains unknown; better understanding of the genotype-phenotype relationship is required to support newborn screening (NBS) and guide treatment. RESULTS: We collected a patient data set from the literature that relates disease severity to ARSA genotype in 489 individuals with MLD. Patient-based data were used to develop a phenotype matrix that predicts MLD phenotype given ARSA alleles in a patient's genotype with 76% accuracy. We then employed a high-throughput enzyme activity assay using mass spectrometry to explore the function of ARSA variants from the curated patient data set and the Genome Aggregation Database (gnomAD). We observed evidence that 36% of variants of unknown significance (VUS) in ARSA may be pathogenic. By classifying functional effects for 251 VUS from gnomAD, we reduced the incidence of genotypes of unknown significance (GUS) by over 98.5% in the overall population. CONCLUSIONS: These results provide an additional tool for clinicians to anticipate the disease course in MLD patients, identifying individuals at high risk of severe disease to support treatment access. Our results suggest that more than 1 in 3 VUS in ARSA may be pathogenic. We show that combining genetic and biochemical information increases diagnostic yield. Our strategy may apply to other recessive diseases, providing a tool to address the challenge of interpreting VUS within genotype-phenotype relationships and NBS.


Assuntos
Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Fenótipo , Genótipo , Alelos , Gravidade do Paciente
2.
Genet Med ; 23(3): 555-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33214709

RESUMO

PURPOSE: Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder caused by the deficiency of arylsulfatase A (ARSA), which results in the accumulation of sulfatides. Newborn screening for MLD may be considered in the future as innovative treatments are advancing. We carried out a research study to assess the feasibility of screening MLD using dried blood spots (DBS) from de-identified newborns. METHODS: To minimize the false-positive rate, a two-tier screening algorithm was designed. The primary test was to quantify C16:0-sulfatide in DBS by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The screening cutoff was established based on the results from 15 MLD newborns to achieve 100% sensitivity. The secondary test was to measure the ARSA activity in DBS from newborns with abnormal C16:0-sulfatide levels. Only newborns that displayed both abnormal C16:0-sulfatide abundance and ARSA activity were considered screen positives. RESULTS: A total of 27,335 newborns were screened using this two-tier algorithm, and 2 high-risk cases were identified. ARSA gene sequencing identified these two high-risk subjects to be a MLD-affected patient and a heterozygote. CONCLUSION: Our study demonstrates that newborn screening for MLD is highly feasible in a real-world scenario with near 100% assay specificity.


Assuntos
Leucodistrofia Metacromática , Cerebrosídeo Sulfatase/genética , Cromatografia Líquida , Humanos , Recém-Nascido , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Triagem Neonatal , Espectrometria de Massas em Tandem
3.
Anal Chem ; 92(9): 6341-6348, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922725

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays were developed to measure arylsulfatase A (ARSA) activity in leukocytes and dried blood spots (DBS) using deuterated natural sulfatide substrate. These new assays were highly specific and sensitive. Patients with metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD) displayed a clear deficit in the enzymatic activity and could be completely distinguished from normal controls. The leukocyte assay reported here will be important for diagnosing MLD and MSD patients and for monitoring the efficacy of therapeutic treatments. ARSA activity was measured in DBS for the first time without an antibody. This new ARSA DBS assay can serve as a second-tier test following the sulfatide measurement in DBS for newborn screening of MLD. This leads to an elimination of most of the false positives identified by the sulfatide assay.


Assuntos
Cerebrosídeo Sulfatase/análise , Teste em Amostras de Sangue Seco , Leucócitos/enzimologia , Leucodistrofia Metacromática/sangue , Doença da Deficiência de Múltiplas Sulfatases/sangue , Cerebrosídeo Sulfatase/metabolismo , Cromatografia Líquida , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/enzimologia , Estrutura Molecular , Doença da Deficiência de Múltiplas Sulfatases/diagnóstico , Doença da Deficiência de Múltiplas Sulfatases/enzimologia , Sulfoglicoesfingolipídeos/química , Espectrometria de Massas em Tandem
4.
Mol Genet Metab ; 122(1-2): 18-32, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28863857

RESUMO

Leukodystrophies are a broad class of genetic disorders that result in disruption or destruction of central myelination. Although the mechanisms underlying these disorders are heterogeneous, there are many common symptoms that affect patients irrespective of the genetic diagnosis. The comfort and quality of life of these children is a primary goal that can complement efforts directed at curative therapies. Contained within this report is a systems-based approach to management of complications that result from leukodystrophies. We discuss the initial evaluation, identification of common medical issues, and management options to establish a comprehensive, standardized care approach. We will also address clinical topics relevant to select leukodystrophies, such as gallbladder pathology and adrenal insufficiency. The recommendations within this review rely on existing studies and consensus opinions and underscore the need for future research on evidence-based outcomes to better treat the manifestations of this unique set of genetic disorders.


Assuntos
Doenças Desmielinizantes/terapia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Leucoencefalopatias/terapia , Doenças por Armazenamento dos Lisossomos/prevenção & controle , Doenças por Armazenamento dos Lisossomos/terapia , Insuficiência Adrenal/terapia , Adulto , Criança , Doenças Desmielinizantes/congênito , Feminino , Vesícula Biliar/patologia , Predisposição Genética para Doença , Humanos , Leucoencefalopatias/congênito , Masculino , Qualidade de Vida
5.
Clin Chem ; 62(1): 279-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26585924

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by deficiency in arylsulfatase A activity, leading to accumulation of sulfatide substrates. Diagnostic and monitoring procedures include demonstration of reduced arylsulfatase A activity in peripheral blood leukocytes or detection of sulfatides in urine. However, the development of a screening test is challenging because of instability of the enzyme in dried blood spots (DBS), the widespread occurrence of pseudodeficiency alleles, and the lack of available urine samples from newborn screening programs. METHODS: We measured individual sulfatide profiles in DBS and dried urine spots (DUS) from MLD patients with LC-MS/MS to identify markers with the discriminatory power to differentiate affected individuals from controls. We also developed a method for converting all sulfatide molecular species into a single species, allowing quantification in positive-ion mode upon derivatization. RESULTS: In DBS from MLD patients, we found up to 23.2-fold and 5.1-fold differences in total sulfatide concentrations for early- and late-onset MLD, respectively, compared with controls and pseudodeficiencies. Corresponding DUS revealed up to 164-fold and 78-fold differences for early- and late-onset MLD patient samples compared with controls. The use of sulfatides converted to a single species simplified the analysis and increased detection sensitivity in positive-ion mode, providing a second option for sulfatide analysis. CONCLUSIONS: This study of sulfatides in DBS and DUS suggests the feasibility of the mass spectrometry method for newborn screening of MLD and sets the stage for a larger-scale newborn screening pilot study.


Assuntos
Teste em Amostras de Sangue Seco , Leucodistrofia Metacromática/sangue , Leucodistrofia Metacromática/urina , Sulfoglicoesfingolipídeos/sangue , Sulfoglicoesfingolipídeos/urina , Cromatografia Líquida de Alta Pressão , Humanos , Recém-Nascido , Espectrometria de Massas , Triagem Neonatal , Sensibilidade e Especificidade
6.
Clin Chim Acta ; 433: 39-43, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24370383

RESUMO

BACKGROUND: Treatments are being developed for metachromatic leukodystrophy (MLD), suggesting the need for eventual newborn screening. Previous studies have shown that sulfatide molecular species are increased in the urine of MLD patients compared to samples from non-MLD individuals, but there is no data using dried blood spots (DBS), the most common sample available for newborn screening laboratories. METHODS: We used ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) to quantify sulfatides in DBS and dried urine spots from 14 MLD patients and 50 non-MLD individuals. RESULTS: Several sulfatide molecular species were increased in dried urine samples from all MLD samples compared to non-MLD samples. Sulfatides, especially low molecular species, were increased in DBS from MLD patients, but the sulfatide levels were relatively low. There was good separation in sulfatide levels between MLD and non-MLD samples when dried urine spots were used, but not with DBS, because DBS from non-MLD individuals have measurable levels of sulfatides. CONCLUSION: Sulfatide accumulation studies in urine, but not in DBS, emerges as the method of choice if newborn screening is to be proposed for MLD.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Leucodistrofia Metacromática/sangue , Leucodistrofia Metacromática/urina , Sulfoglicoesfingolipídeos/sangue , Sulfoglicoesfingolipídeos/urina , Espectrometria de Massas em Tandem , Urinálise/métodos , Cromatografia Líquida , Humanos , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA