Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Cell ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38692272

RESUMO

Dynamic changes in three-dimensional cell shape are important for tissue form and function. In the developing Drosophila eye, photoreceptor differentiation requires the progression across the tissue of an epithelial fold known as the morphogenetic furrow. Morphogenetic furrow progression involves apical cell constriction and movement of apical cell edges. Here, we show that cells progressing through the morphogenetic furrow move their basal edges in opposite direction to their apical edges, resulting in a cellular tilting movement. We further demonstrate that cells generate, at their basal side, oriented, force-generating protrusions. Knockdown of the protein kinase Src42A or photoactivation of a dominant-negative form of the small GTPase Rac1 reduces protrusion formation. Impaired protrusion formation stalls basal cell movement and slows down morphogenetic furrow progression and photoreceptor differentiation. This work identifies a cellular tilting mechanism important for the generation of dynamic tissue shape changes and cell differentiation.

2.
Development ; 147(23)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277300

RESUMO

The folding of epithelial sheets is important for tissues, organs and embryos to attain their proper shapes. Epithelial folding requires subcellular modulations of mechanical forces in cells. Fold formation has mainly been attributed to mechanical force generation at apical cell sides, but several studies indicate a role of mechanical tension at lateral cell sides in this process. However, whether lateral tension increase is sufficient to drive epithelial folding remains unclear. Here, we have used optogenetics to locally increase mechanical force generation at apical, lateral or basal sides of epithelial Drosophila wing disc cells, an important model for studying morphogenesis. We show that optogenetic recruitment of RhoGEF2 to apical, lateral or basal cell sides leads to local accumulation of F-actin and increase in mechanical tension. Increased lateral tension, but not increased apical or basal tension, results in sizeable fold formation. Our results stress the diversification of folding mechanisms between different tissues and highlight the importance of lateral tension increase for epithelial folding.


Assuntos
Fenômenos Biomecânicos/genética , Padronização Corporal/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Morfogênese/genética , Actinas/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Estresse Mecânico , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/ultraestrutura
3.
Development ; 147(5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161062

RESUMO

The modulation of mechanical tension is important for sculpturing tissues during animal development, yet how mechanical tension is controlled remains poorly understood. In Drosophila wing discs, the local reduction of mechanical tension at basal cell edges results in basal relaxation and the formation of an epithelial fold. Here, we show that Wingless, which is expressed next to this fold, promotes basal cell edge tension to suppress the formation of this fold. Ectopic expression of Wingless blocks fold formation, whereas the depletion of Wingless increases fold depth. Moreover, local depletion of Wingless in a region where Wingless signal transduction is normally high results in ectopic fold formation. The depletion of Wingless also results in decreased basal cell edge tension and basal cell area relaxation. Conversely, the activation of Wingless signal transduction leads to increased basal cell edge tension and basal cell area constriction. Our results identify the Wingless signal transduction pathway as a crucial modulator of mechanical tension that is important for proper wing disc morphogenesis.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Morfogênese/genética , Asas de Animais/embriologia , Proteína Wnt1/genética , Animais , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais/genética , Estresse Mecânico
4.
Nat Commun ; 9(1): 4620, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397306

RESUMO

Epithelial folding transforms simple sheets of cells into complex three-dimensional tissues and organs during animal development. Epithelial folding has mainly been attributed to mechanical forces generated by an apically localized actomyosin network, however, contributions of forces generated at basal and lateral cell surfaces remain largely unknown. Here we show that a local decrease of basal tension and an increased lateral tension, but not apical constriction, drive the formation of two neighboring folds in developing Drosophila wing imaginal discs. Spatially defined reduction of extracellular matrix density results in local decrease of basal tension in the first fold; fluctuations in F-actin lead to increased lateral tension in the second fold. Simulations using a 3D vertex model show that the two distinct mechanisms can drive epithelial folding. Our combination of lateral and basal tension measurements with a mechanical tissue model reveals how simple modulations of surface and edge tension drive complex three-dimensional morphological changes.


Assuntos
Drosophila/crescimento & desenvolvimento , Células Epiteliais/citologia , Epitélio/anatomia & histologia , Epitélio/embriologia , Morfogênese , Estresse Mecânico , Actinas/metabolismo , Actomiosina , Amidas/antagonistas & inibidores , Animais , Fenômenos Biomecânicos , Padronização Corporal/genética , Divisão Celular , Proliferação de Células , Forma Celular , Tamanho Celular , Drosophila/anatomia & histologia , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Matriz Extracelular , Discos Imaginais/crescimento & desenvolvimento , Larva/citologia , Larva/metabolismo , Terapia a Laser , Modelos Anatômicos , Modelos Biológicos , Piridinas/antagonistas & inibidores
5.
Development ; 142(22): 3845-58, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26577205

RESUMO

Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds.


Assuntos
Comunicação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Asas de Animais/crescimento & desenvolvimento , Animais , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador , Microscopia Confocal
6.
Oncotarget ; 5(23): 11998-2015, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25344916

RESUMO

The transcription factors TBX2 and TBX3 are overexpressed in various human cancers. Here, we investigated the effect of overexpressing the orthologous Tbx genes Drosophila optomotor-blind (omb) and human TBX2 in the epithelium of the Drosophila wing imaginal disc and observed two types of cell motility. Omb/TBX2 overexpressing cells could move within the plane of the epithelium. Invasive cells migrated long-distance as single cells retaining or regaining normal cell shape and apico-basal polarity in spite of attenuated apical DE-cadherin concentration. Inappropriate levels of DE-cadherin were sufficient to drive cell migration in the wing disc epithelium. Omb/TBX2 overexpression and reduced DE-cadherin-dependent adhesion caused the formation of actin-rich lateral cell protrusions. Omb/TBX2 overexpressing cells could also delaminate basally, penetrating the basal lamina, however, without degradation of extracellular matrix. Expression of Timp, an inhibitor of matrix metalloproteases, blocked neither intraepithelial motility nor basal extrusion. Our results reveal an MMP-independent mechanism of cell invasion and suggest a conserved role of Tbx2-related proteins in cell invasion and metastasis-related processes.


Assuntos
Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas do Tecido Nervoso/genética , Proteínas com Domínio T/genética
7.
Curr Biol ; 24(15): 1798-805, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25065753

RESUMO

Mechanical forces play important roles during tissue organization in developing animals. Many tissues are organized into adjacent, nonmixing groups of cells termed compartments. Boundaries between compartments display a straight morphology and are associated with signaling centers that are important for tissue growth and patterning. Local increases in mechanical tension at cell junctions along compartment boundaries have recently been shown to prevent cell mixing and to maintain straight boundaries. The cellular mechanisms by which local increases in mechanical tension prevent cell mixing at compartment boundaries, however, remain poorly understood. Here, we have used live imaging and quantitative image analysis to determine cellular dynamics at and near the anteroposterior compartment boundaries of the Drosophila pupal abdominal epidermis. We show that cell mixing within compartments involves multiple cell intercalations. Frequency and orientation of cell intercalations are unchanged along the compartment boundaries; rather, an asymmetry in the shrinkage of junctions during intercalation is biased, resulting in cell rearrangements that suppress cell mixing. Simulations of tissue growth show that local increases in mechanical tension can account for this bias in junctional shrinkage. We conclude that local increases in mechanical tension maintain cell populations separate by influencing junctional rearrangements during cell intercalation.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Transdução de Sinais , Abdome/crescimento & desenvolvimento , Animais , Células Epidérmicas , Epiderme/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador , Pupa/citologia , Pupa/crescimento & desenvolvimento , Estresse Mecânico
8.
Development ; 139(15): 2773-82, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22782723

RESUMO

The Drosophila wing imaginal disc is subdivided into notum, hinge and blade territories during the third larval instar by formation of several deep apical folds. The molecular mechanisms of these subdivisions and the subsequent initiation of morphogenic processes during metamorphosis are poorly understood. Here, we demonstrate that the Dorsocross (Doc) T-box genes promote the progression of epithelial folds that not only separate the hinge and blade regions of the wing disc but also contribute to metamorphic development by changing cell shapes and bending the wing disc. We found that Doc expression was restricted by two inhibitors, Vestigial and Homothorax, leading to two narrow Doc stripes where the folds separating hinge and blade are forming. Doc mutant clones prevented the lateral extension and deepening of these folds at the larval stage and delayed wing disc bending in the early pupal stage. Ectopic Doc expression was sufficient to generate deep apical folds by causing a basolateral redistribution of the apical microtubule web and a shortening of cells. Cells of both the endogenous blade/hinge folds and of folds elicited by ectopic Doc expression expressed Matrix metalloproteinase 2 (Mmp2). In these folds, integrins and extracellular matrix proteins were depleted. Overexpression of Doc along the blade/hinge folds caused precocious wing disc bending, which could be suppressed by co-expressing MMP2RNAi.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição/fisiologia , Asas de Animais/embriologia , Alelos , Animais , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Microtúbulos/metabolismo , Morfogênese , Mutação , Ligação Proteica , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA