Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Physiol ; 195(2): 1293-1311, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38428987

RESUMO

In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.


Assuntos
Parede Celular , Cucumis sativus , Proteínas de Plantas , Polinização , Cucumis sativus/genética , Cucumis sativus/fisiologia , Cucumis sativus/enzimologia , Cucumis sativus/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Açúcares/metabolismo , beta-Frutofuranosidase/metabolismo , beta-Frutofuranosidase/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Fertilização , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/fisiologia
2.
Hortic Res ; 10(12): uhad216, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077499

RESUMO

Central metabolism produces carbohydrates and amino acids that are tightly correlated to plant growth and thereby crop productivity. Malate is reported to link mitochondrial respiratory metabolism with cytosolic biosynthetic pathways. Although the function of malate metabolism-related enzymes in providing carbon has been characterized in some plants, evidence for this role in the fleshy fruit of cucumber is lacking. Here, radiolabeled bicarbonate fed into the xylem stream from the cucumber roots was incorporated into amino acids, soluble sugars, and organic acids in the exocarp and vasculature of fruits. The activities of decarboxylases, especially decarboxylation from NADP-dependent malic enzyme (NADP-ME), were higher in cucumber fruit than in the leaf lamina. Histochemical localization revealed that CsNADP-ME2 was mainly located in the exocarp and vascular bundle system of fruit. Radiotracer and gas-exchange analysis indicated that overexpression of CsNADP-ME2 could promote carbon flux into soluble sugars and starch in fruits. Further studies combined with metabolic profiling revealed that the downregulation of CsNADP-ME2 in RNA interference (RNAi) lines caused the accumulation of its substrate, malate, in the exocarp. In addition to inhibition of glycolysis-related gene expression and reduction of the activities of the corresponding enzymes, increased amino acid synthesis and decreased sugar abundance were also observed in these lines. The opposite effect was found in CsNADP-ME2-overexpressing lines, suggesting that there may be a continuous bottom-up feedback regulation of glycolysis in cucumber fruits. Overall, our studies indicate that CsNADP-ME2 may play potential roles in both central carbon reactions and amino acid metabolism in cucumber fruits.

3.
New Phytol ; 239(2): 639-659, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129077

RESUMO

Amino acid transporters are the principal mediators of organic nitrogen distribution within plants and are essential for plant growth and development. Despite this importance, relatively few amino acid transporter genes have been explored and elucidated in cucumber (Cucumis sativus). Here, a total of 86 amino acid transporter genes were identified in the cucumber genome. We further identified Amino Acid Permease (AAP) subfamily members that exhibited distinct expression patterns in different tissues. We found that the CsAAP2 as a candidate gene encoding a functional amino acid transporter is highly expressed in cucumber root vascular cells. CsAAP2 knockout lines exhibited arrested development of root meristem, which then caused the delayed initiation of lateral root and the inhibition of root elongation. What is more, the shoot growth of aap2 mutants was strongly retarded due to defects in cucumber root development. Moreover, aap2 mutants exhibited higher concentrations of amino acids and lignin in roots. We found that the mutant roots had a stronger ability to acidize medium. Furthermore, in the aap2 mutants, polar auxin transport was disrupted in the root tip, leading to high auxin levels in roots. Interestingly, slightly alkaline media rescued their severely reduced root growth by stimulating auxin pathway.


Assuntos
Cucumis sativus , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Raízes de Plantas/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Meristema/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 189(3): 1501-1518, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35357489

RESUMO

Sugars are necessary for plant growth and fruit development. Cucumber (Cucumis sativus L.) transports sugars, mainly raffinose family oligosaccharides (RFOs), in the vascular bundle. As the dominant sugars in cucumber fruit, glucose and fructose are derived from sucrose, which is the product of RFO hydrolysis by α-galactosidase (α-Gal). Here, we characterized the cucumber alkaline α-galactosidase 2 (CsAGA2) gene and found that CsAGA2 has undergone human selection during cucumber domestication. Further experiments showed that the expression of CsAGA2 increases gradually during fruit development, especially in fruit vasculature. In CsAGA2-RNA interference (RNAi) lines, fruit growth was delayed because of lower hexose production in the peduncle and fruit main vascular bundle (MVB). In contrast, CsAGA2-overexpressing (OE) plants displayed bigger fruits. Functional enrichment analysis of transcriptional data indicated that genes related to sugar metabolism, cell wall metabolism, and hormone signaling were significantly downregulated in the peduncle and fruit MVBs of CsAGA2-RNAi plants. Moreover, downregulation of CsAGA2 also caused negative feedback regulation on source leaves, which was shown by reduced photosynthetic efficiency, fewer plasmodesmata at the surface between mesophyll cell and intermediary cell (IC) or between IC and sieve element, and downregulated gene expression and enzyme activities related to phloem loading, as well as decreased sugar production and exportation from leaves and petioles. The opposite trend was observed in CsAGA2-OE lines. Overall, we conclude that CsAGA2 is essential for cucumber fruit set and development through mediation of sugar communication between sink strength and source activity.


Assuntos
Cucumis sativus , Proteínas de Plantas , alfa-Galactosidase , Comunicação , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , alfa-Galactosidase/genética , alfa-Galactosidase/metabolismo
5.
BMC Plant Biol ; 21(1): 454, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615487

RESUMO

BACKGROUND: Photosynthesis in the green leafless blade tissues or organs of plants has been studied in some plants, but the photosynthetic characteristics of stems and petioles are poorly understood. Cucurbitaceous plants are climbing plants that have substantial stem and petiole biomass. Understanding the photosynthetic contribution of cucumber stems and petioles to their growth and the underlying molecular mechanisms are important for the regulating of growth in cucumber production. RESULTS: In this study, the photosynthetic capacity of cucumber stems and petioles were determined by 14CO2 uptake. The total carbon fixed by the stems and petioles was approximately 4% of that fixed by one leaf blade in the cucumber seedling stage, while the proportion of the carbon accumulated in the stems and petioles that redistributed to sink organs (roots and shoot apexes) obviously increased under leafless conditions. The photosynthetic properties of cucumber stems and petioles were studied using a combination of electron microscopy and isotope tracers to compare these properties of stems and petioles with those of leaf blade using two genotypes of cucumber (dark green and light green). Compared with those of the leaf blades, the chlorophyll contents of the cucumber stems and petioles were lower, and the stems and petioles had lower chloroplast numbers and lower stoma numbers but higher thylakoid grana lamella numbers and larger stoma sizes. The Chl a/b ratios were also decreased in the petioles and stems compared with those in the leaf blades. The total photosynthetic rates of the stems and petioles were equivalent to 6 ~ 8% of that of one leaf blade, but the respiration rates were similar in all the three organs, with an almost net 0 photosynthetic rate in the stems and petioles. Transcriptome analysis showed that compared with the leaf blades, the stems and petioles has significantly different gene expression levels in photosynthesis, porphyrin and chlorophyll metabolism; photosynthetic antenna proteins; and carbon fixation. PEPC enzyme activities were higher in the stems and petioles than in the leaf blades, suggesting that the photosynthetic and respiratory mechanisms in stems and petioles are different from those in leaf blade, and these results are consistent with the gene expression data. CONCLUSIONS: In this study, we confirmed the photosynthetic contribution to the growth of cucumber stems and petioles, and showed their similar photosynthetic patterns in the terms of anatomy, molecular biology and physiology, which were different from those of cucumber leaf blades.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/genética , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Variação Genética , Genótipo
6.
Plant J ; 106(4): 1163-1176, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713355

RESUMO

Cucurbit phloem is complex, with large sieve tubes on both sides of the xylem (bicollateral phloem), and extrafascicular elements that form an intricate web linking the rest of the vasculature. Little is known of the physical interconnections between these networks or their functional specialization, largely because the extrafascicular phloem strands branch and turn at irregular angles. Here, export in the phloem from specific regions of the lamina of cucumber (Cucumis sativus L.) was mapped using carboxyfluorescein and 14 C as mobile tracers. We also mapped vascular architecture by conventional microscopy and X-ray computed tomography using optimized whole-tissue staining procedures. Differential gene expression in the internal (IP) and external phloem (EP) was analyzed by laser-capture microdissection followed by RNA-sequencing. The vascular bundles of the lamina form a nexus at the petiole junction, emerging in a predictable pattern, each bundle conducting photoassimilate from a specific region of the blade. The vascular bundles of the stem interconnect at the node, facilitating lateral transport around the stem. Elements of the extrafascicular phloem traverse the stem and petiole obliquely, joining the IP and EP of adjacent bundles. Using pairwise comparisons and weighted gene coexpression network analysis, we found differences in gene expression patterns between the petiole and stem and between IP and EP, and we identified hub genes of tissue-specific modules. Genes related to transport were expressed primarily in the EP while those involved in cell differentiation and development as well as amino acid transport and metabolism were expressed mainly in the IP.


Assuntos
Cucumis sativus/ultraestrutura , Cucumis sativus/genética , Cucumis sativus/metabolismo , Floema/genética , Floema/metabolismo , Floema/ultraestrutura , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Xilema/genética , Xilema/metabolismo , Xilema/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602821

RESUMO

Plant cystatins are cysteine proteinase inhibitors that play key roles in defense responses. In this work, we describe an unexpected role for the cystatin-like protein DEFORMED FLORAL BUD1 (CsDFB1) as a transcriptional regulator of local auxin distribution in cucumber (Cucumis sativus L.). CsDFB1 was strongly expressed in the floral meristems, floral primordia, and vasculature. RNA interference (RNAi)-mediated silencing of CsDFB1 led to a significantly increased number of floral organs and vascular bundles, together with a pronounced accumulation of auxin. Conversely, accompanied by a decrease of auxin, overexpression of CsDFB1 resulted in a dramatic reduction in floral organ number and an obvious defect in vascular patterning, as well as organ fusion. CsDFB1 physically interacted with the cucumber ortholog of PHABULOSA (CsPHB), an HD-ZIP III transcription factor whose transcripts exhibit the same pattern as CsDFB1 Overexpression of CsPHB increased auxin accumulation in shoot tips and induced a floral phenotype similar to that of CsDFB1-RNAi lines. Furthermore, genetic and biochemical analyses revealed that CsDFB1 impairs CsPHB-mediated transcriptional regulation of the auxin biosynthetic gene YUCCA2 and the auxin efflux carrier PIN-FORMED1, and thus plays a pivotal role in auxin distribution. In summary, we propose that the CsDFB1-CsPHB module represents a regulatory pathway for local auxin distribution that governs floral organogenesis and vascular differentiation in cucumber.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Organogênese , Proteínas de Plantas/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Flores/genética , Flores/metabolismo , Fenótipo , Proteínas de Plantas/genética
8.
Plant Physiol ; 186(1): 640-654, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33604597

RESUMO

In the fleshy fruit of cucumbers (Cucumis sativus L.), the phloem flow is unloaded via an apoplasmic pathway, which requires protein carriers to export sugars derived from stachyose and raffinose into the apoplasm. However, transporter(s) involved in this process remain unidentified. Here, we report that a hexose transporter, CsSWEET7a (Sugar Will Eventually be Exported Transporter 7a), was highly expressed in cucumber sink tissues and localized to the plasma membrane in companion cells of the phloem. Its expression level increased gradually during fruit development. Down-regulation of CsSWEET7a by RNA interference (RNAi) resulted in smaller fruit size along with reduced soluble sugar levels and reduced allocation of 14C-labelled carbon to sink tissues. CsSWEET7a overexpression lines showed an opposite phenotype. Interestingly, genes encoding alkaline α-galactosidase (AGA) and sucrose synthase (SUS) were also differentially regulated in CsSWEET7a transgenic lines. Immunohistochemical analysis demonstrated that CsAGA2 co-localized with CsSWEET7a in companion cells, indicating cooperation between AGA and CsSWEET7a in fruit phloem unloading. Our findings indicated that CsSWEET7a is involved in sugar phloem unloading in cucumber fruit by removing hexoses from companion cells to the apoplasmic space to stimulate the raffinose family of oligosaccharides (RFOs) metabolism so that additional sugars can be unloaded to promote fruit growth. This study also provides a possible avenue towards improving fruit production in cucumber.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Proteínas de Transporte de Monossacarídeos/genética , Floema/metabolismo , Proteínas de Plantas/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo
9.
Front Plant Sci ; 12: 758526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173746

RESUMO

During anthesis, there is an increased demand for carbohydrates due to pollen maturation and nectary secretion that warrants a systematic phloem unloading strategy for sugar partitioning. Sugar transporters are key components of the apoplasmic phloem unloading strategy and control the sugar flux needed for plant development. Currently, the phloem unloading strategy during anthesis has not been explored in cucumber, and the question of which sugar transporters are active during flower anthesis is poorly understood. In this study, a study utilizing the phloem-mobile symplasmic tracer carboxyfluorescein (CF) suggested that the phloem unloading was symplasmically isolated in the receptacle and nectary of cucumber flowers at anthesis. We also identified a hexose transporter that is highly expressed in cucumber flower, Sugar Will Eventually be Exported Transporter 7a (SWEET7a). CsSWEET7a was mainly expressed in receptacle and nectary tissues in both male and female flowers, where its expression level increased rapidly right before anthesis. At anthesis, the CsSWEET7a protein was specifically localized to the phloem region of the receptacle and nectary, indicating that CsSWEET7a may function in the apoplasmic phloem unloading during flower anthesis. Although cucumber mainly transports raffinose family oligosaccharides (RFOs) in the phloem, sucrose, glucose, and fructose are the major sugars in the flower receptacle and the nectary as well as in nectar at anthesis. In addition, the transcript levels of genes encoding soluble sugar hydrolases (α-galactosidase, sucrose synthase, cytoplasmic invertase, and cell wall invertase) were correlated with that of CsSWEET7a. These results indicated that CsSWEET7a may be involved in sugar partitioning as an exporter in the phloem of the receptacle and nectary to supply carbohydrates for flower anthesis and nectar secretion in cucumber.

10.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751984

RESUMO

Amino acid transporters are the main mediators of nitrogen distribution throughout the plant body, and are essential for sustaining growth and development. In this review, we summarize the current state of knowledge on the identity and biological functions of amino acid transporters in plants, and discuss the regulation of amino acid transporters in response to environmental stimuli. We focus on transporter function in amino acid assimilation and phloem loading and unloading, as well as on the molecular identity of amino acid exporters. Moreover, we discuss the effects of amino acid transport on carbon assimilation, as well as their cross-regulation, which is at the heart of sustainable agricultural production.

11.
Foods ; 9(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150913

RESUMO

Bagging is widely practiced to produce high quality and unblemished fruit; however, little is currently known about the effect of bagging on flavor and nutritional quality of cucumber fruits. Here we determined the influence of bagging on fruit quality of cucumber (Cucumis sativus L.) using three genotypes from different geographic groups. Exocarp chlorophyll and carotenoid levels were significantly decreased by bagging, accompanied by color change. Ascorbate content in bagged fruits decreased to some extent, while contents of soluble sugars, starch, and cellulose were comparable with those of control fruits. Compositions related to fruit flavor quality could be enhanced largely through bagging treatment, with elevation of the relative proportion of C6 aldehyde, as well as (E,Z)-2,6-nonadienal/(E)-2-nonenal ratio, and linoleic/α-linolenic acid ratio. Lipoxygenase and hydroperoxide lyase, two key enzymes in the production of volatiles, displayed distinctive transcript expression patterns and trends in changes of enzymatic activity in the bagged fruits of different genotypes. Overall, this study assesses the information on changing characteristics of fruit volatile composition and nutritional quality among different cucumber genotypes after bagging treatment. Results of this study would contribute to providing reference for mechanism study and cultivation conditions to improve cucumber fruit flavor to a considerable degree.

13.
Plant Physiol ; 180(2): 986-997, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30967482

RESUMO

In plants, male sterility is an important agronomic trait, especially in hybrid crop production. Many factors are known to affect crop male sterility, but it remains unclear whether Suc transporters (SUTs) participate directly in this process. Here, we identified and functionally characterized the cucumber (Cucumis sativus) CsSUT1, a typical plasma membrane-localized energy-dependent high-affinity Suc-H+ symporter. CsSUT1 is expressed in male flowers and encodes a protein that is localized primarily in the tapetum, pollen, and companion cells of the phloem of sepals, petals, filaments, and pedicel. The male flowers of CsSUT1-RNA interference (RNAi) lines exhibited a decrease in Suc, hexose, and starch content, relative to those of the wild type, during the later stages of male flower development, a finding that was highly associated with male sterility. Transcriptomic analysis revealed that numerous genes associated with sugar metabolism, transport, and signaling, as well as with auxin signaling, were down-regulated, whereas most myeloblastosis (MYB) transcription factor genes were up-regulated in these CsSUT1-RNAi lines relative to wild type. Our findings demonstrate that male sterility can be induced by RNAi-mediated down-regulation of CsSUT1 expression, through the resultant perturbation in carbohydrate delivery and subsequent alteration in sugar and hormone signaling and up-regulation of specific MYB transcription factors. This knowledge provides a new approach for bioengineering male sterility in crop plants.


Assuntos
Metabolismo dos Carboidratos/genética , Cucumis sativus/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulação para Baixo/genética , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Floema/metabolismo , Floema/ultraestrutura , Proteínas de Plantas/genética , Pólen/genética , Pólen/ultraestrutura , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição/metabolismo
14.
Plant J ; 98(3): 391-404, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604489

RESUMO

Phloem loading, as the first step of transporting photoassimilates from mesophyll cells to sieve element-companion cell complex, creates a driving force for long-distance nutrient transport. Three loading strategies have been proposed: passive symplastic loading, apoplastic loading and symplastic transfer followed by polymer-trapping of stachyose and raffinose. Although individual species are generally referred to as using a single phloem loading mechanism, it has been suggested that some plants may use more than one, i.e. 'mixed loading'. Here, by using a combination of electron microscopy, reverse genetics and 14 C labeling, loading strategies were studied in cucumber, a polymer-trapping loading species. The results indicate that intermediary cells (ICs), which mediate polymer-trapping, and ordinary companion cells, which mediate apoplastic loading, were mainly found in the fifth and third order veins, respectively. Accordingly, a cucumber galactinol synthase gene (CsGolS1) and a sucrose transporter gene (CsSUT2) were expressed mainly in the fifth/third and the third order veins, respectively. Immunolocalization analysis indicated that CsGolS1 was localized in companion cells (CCs) while CsSUT2 was in CCs and sieve elements (SEs). Suppressing CsGolS1 significantly decreased the stachyose level and increased sucrose content, while suppressing CsSUT2 decreased the sucrose level and increased the stachyose content in leaves. After 14 CO2 labeling, [14 C]sucrose export increased and [14 C]stachyose export reduced from petioles in CsGolS1i plants, but [14 C]sucrose export decreased and [14 C]stachyose export increased into petioles in CsSUT2i plants. Similar results were also observed after pre-treating the CsGolS1i leaves with PCMBS (transporter inhibitor). These results demonstrate that cucumber phloem loading depends on both polymer-trapping and apoplastic loading strategies.


Assuntos
Cucumis sativus/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/metabolismo , Sacarose/metabolismo
15.
Plant Cell Physiol ; 60(4): 752-764, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590818

RESUMO

Sucrose synthase (SUS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. In this study, we used reverse genetic approaches and carbohydrate analysis to investigate the role of cucumber sucrose synthase gene 4 (CsSUS4) in the growth and development of sink organs. Transcript analyses showed that CsSUS4 was predominantly expressed in sink organs, particularly in flowers, fruits and roots, and that CsSUS4 protein was localized to companion cells and phloem parenchyma cells. Down-regulation of CsSUS4 expression resulted in a decrease in SUS activity in conjunction with lower hexose, starch and cellulose contents in fruits, and led to an overall reduction in the size and weight of flowers and fruits. Furthermore, CsSUS4 overexpression (OE) lines exhibited increased carbohydrate content, and larger and heavier flowers and fruits. The numbers of multi-petal flowers and multi-carpel fruits were greater in CsSUS4-OE plants compared with wild type and were regulated by MADS-box transcription factor. These results demonstrate that CsSUS4 plays important roles in the growth and development of cucumber flowers and fruits.


Assuntos
Cucumis sativus/metabolismo , Flores/metabolismo , Frutas/metabolismo , Glucosiltransferases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Cucumis sativus/genética , Flores/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosiltransferases/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA
16.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322052

RESUMO

As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-ß-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.


Assuntos
Mapeamento Cromossômico/métodos , Cucurbita/genética , Locos de Características Quantitativas , Cromossomos de Plantas/genética , Cucurbita/crescimento & desenvolvimento , Etiquetas de Sequências Expressas , Repetições de Microssatélites , Melhoramento Vegetal
17.
Plant J ; 96(5): 982-996, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30194881

RESUMO

The phloem of the Cucurbitaceae has long been a subject of interest due to its complex nature and the economic importance of the family. As in a limited number of other families, cucurbit phloem is bicollateral, i.e. with sieve tubes on both sides of the xylem. To date little is known about the specialized functions of the internal phloem (IP) and external phloem (EP). Here, a combination of microscopy, fluorescent dye transport analysis, micro-computed tomography, laser capture microdissection and RNA-sequencing (RNA-Seq) were used to study the functions of IP and EP in the vascular bundles (VBs) of cucumber fruit. There is one type of VB in the peduncle, but four in the fruit: peripheral (PeVB), main (MVB), carpel (CVB) and placental (PlVB). The VBs are bicollateral, except for the CVB and PlVB. Phloem mobile tracers and 14 C applied to leaves are transported primarily in the EP, and to a lesser extent in the IP. RNA-Seq data indicate preferential gene transcription in the IP related to differentiation/development, hormone transport, RNA or protein modification/processing/transport, and nitrogen compound metabolism and transport. The EP preferentially expresses genes for stimulus/stress, defense, ion transport and secondary metabolite biosynthesis. The MVB phloem is preferentially involved in photoassimilate transport, unloading and long-distance signaling, while the PeVB plays a more substantial role in morphogenesis and/or development and defense response. CVB and PlVB transcripts are biased toward development of reproductive organs. These findings provide an integrated view of the differentiated structure and function of the vascular tissue in cucumber fruit.


Assuntos
Cucumis sativus/metabolismo , Frutas/metabolismo , Floema/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/ultraestrutura , Frutas/crescimento & desenvolvimento , Frutas/ultraestrutura , Perfilação da Expressão Gênica , Microscopia Confocal , Floema/crescimento & desenvolvimento , Floema/ultraestrutura , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/ultraestrutura , Microtomografia por Raio-X , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/ultraestrutura
18.
J Plant Physiol ; 228: 150-157, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29913429

RESUMO

Sucrose phosphate synthases (SPSs) are rate-limiting sucrose synthesis enzymes present in photosynthetic and non-photosynthetic tissues. The cucumber genome contains three SPSs that can be grouped into families A, B, and C. CsSPS1 and CsSPS2 are highly expressed in flowers and mature leaves, while the expression level of CsSPS4 increased gradually after leaf unfolding in our study and reached its peak after 20 days. In CsSPS4-overexpression tobacco plants, sucrose content and sucrose/starch ratio were increased significantly and resulted in improved leaf yield. By contrast, in CsSPS4-overexpression (CsSPS4-OE) cucumber lines, contents of sucrose and starch were unchanged, and raffinose was increased in transgenic cucumber leaves. The expression of cucumber raffinose family oligosaccharide (RFO)-synthesis-related genes increased obviously in cucumber CsSPS4-OE plants, and the sucrose, raffinose, and stachyose contents increased significantly in the petioles of CsSPS4-OE lines. In CsSPS4-antisense (CsSPS4-A) cucumber lines, decreases occurred in mRNA expression, enzyme activity, sucrose content, sucrose/starch ratio, and stachyose transport, but the RFO-synthesis-related genes were nearly unchanged. Together, these results suggest that overexpression of CsSPS4 can lead to carbon metabolism prioritizing sugar transport in cucumber, and suppression of CsSPS4 likely promotes carbon metabolism to accumulate starch, showing a more complicated carbon distribution model than in transgenic tobacco plants.


Assuntos
Carbono/metabolismo , Cucumis sativus/enzimologia , Cucumis sativus/metabolismo , Glucosiltransferases/metabolismo , Nicotiana/metabolismo , Oligossacarídeos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Glucosiltransferases/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética
19.
Front Plant Sci ; 8: 1855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163584

RESUMO

The functions of SWEET (Sugar Will Eventually be Exported Transporter) proteins have been studied in a number of crops, but little is known about their roles in cucumber (Cucumis sativus L.), a model plant for studying stachyose metabolism and phloem function. Here, we identified 17 cucumber SWEET genes (CsSWEETs), located on chromosomes 1-6, and classified them into four clades. Two genes from each clade were selected for spatiotemporal expression, subcellular localization, and substrate specificity analyses. Clade I and II proteins were all hexose transporters and targeted to the plasma membrane, while clade III proteins also localized to the plasma membrane, but used sucrose as a substrate. Clade IV SWEET proteins were localized to the tonoplast, and used hexose as a substrate. The eight tested CsSWEET genes were most highly expressed in flower, which represents a large sink in plants. However, each gene also showed specific expression patterns: three of the eight tested genes were highly expressed in mature leaves, two in roots, two in fruit, two in stems, and one was detected in all tested organs. The likely biological roles of each are discussed based on the above results.

20.
Plant Mol Biol ; 95(1-2): 1-15, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28608281

RESUMO

Stachyose is the main transporting sugar in phloem of Raffinose family oligosaccharides-transporting species. Stachyose synthase (STS) is a key enzyme for stachyose biosynthesis, but the gene encoding STS is poorly characterized in cucumber (Cucumis sativus L.), which is a model plant for studying stachyose metabolism and phloem function. In this research, stachyose synthase gene (CsSTS) from cucumber was isolated and its physiological functions were analyzed. CsSTS expressed mainly in the phloem of the minor veins in mature leaves and localized to companion cells. Reverse genetics with CsSTS RNAi lines revealed obviously reductions in STS activity and stachyose content along with a small amount of starch accumulation in leaves, suggesting that CsSTS is involved in phloem loading of cucumber leaves. After 6 °C low temperature stress, malondialdehyde content and electrical conductivity increased, especially in CsSTS-RNAi plants. But CsSTS expression was up-regulated, STS activity and stachyose level increased, the activities of reactive-oxygen-scavenging enzyme in cucumber seedlings improved significantly and starch accumulation reduced, especially in CsSTS-OE lines. These results demonstrate clearly that CsSTS is involved in phloem loading, carbohydrate distribution and tolerance of cucumber seedlings to low temperature stress.


Assuntos
Temperatura Baixa , Cucumis sativus/genética , Cucumis sativus/fisiologia , Galactosiltransferases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Floema/genética , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Carboidratos/análise , Galactosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Análise de Sequência de DNA , Amido/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA