Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncol Lett ; 10(4): 2227-2232, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26622824

RESUMO

Hepatocellular carcinoma (HCC) is a highly aggressive form of carcinoma with poor prognosis, and HCC-associated mortality primarily occurs due to migration and invasion of HCC cells. The manipulation of epigenetic proteins, such as BRD4, has recently emerged as an alternative therapeutic strategy. The present study aimed to investigate the novel mechanism of BRD4 involvement in the migration and invasion of HCC cells. Reverse transcription-quantitative polymerase chain reaction was used to assess BRD4 mRNA expression levels in HCC cell lines. This analysis demonstrated that BRD4 was significantly overexpressed in HCC cell lines compared with a human immortalized normal liver cell line. A short hairpin RNA (shRNA) was then used to suppress BRD4 expression in HCC cells, and resulted in impaired HCC cell proliferation, migration and invasion. When the HepG2 HCC cell line was treated with recombinant human sonic hedgehog (SHH) peptide, the migration and invasion capabilities of HepG2 cells that were inhibited by BRD4 silencing were restored. BRD4 induced cell migration and invasion in HepG2 cells through the activation of matrix metalloproteinase (MMP)-2 and MMP-9, mediated by the SHH signaling pathway. Taken together, the results of the present study demonstrated the importance of BRD4 in HCC cell proliferation and metastasis. Thus, BRD4 is a potential novel target for the development of therapeutic approaches against HCC.

2.
Oncol Rep ; 33(4): 1699-706, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25647019

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive carcinoma with a poor prognosis. To date, there is no effective treatment for this fatal disease. The manipulation of epigenetic proteins, such as BRD4, has recently emerged as an alternative therapeutic strategy. Our objective was to analyze the effect of BRD4 on the cell progression and chemoresistance of PDAC and the novel mechanisms involved. In the present study, we firstly revealed that the expression of BRD4 was significantly upregulated in PDAC cell lines, compared to that in human pancreatic duct epithelial cells. An in vitro assay showed that the suppression of BRD4 impaired PDAC cell viability and proliferation. Similarly, the tumor growth rate was also decreased in vivo after silencing of BRD4. Furthermore, we showed that the expression of BRD4 was increased after treatment with gemcitabine (GEM). Combination treatment of GEM and BRD4 silencing had a synergistic effect on the chemotherapeutic efficacy in the PANC-1 and MIAPaCa-2 cell lines, and significantly promoted apoptosis. In particular, we demonstrated that BRD4 activated the Sonic hedgehog (Shh) signaling pathway members in a ligand-independent manner in the PDAC cells. Together, our results indicate the important role of BRD4 in PDAC cell proliferation and chemoresistance and suggests that BRD4 is a promising target directed against the transcriptional program of PDAC.


Assuntos
Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/fisiologia , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/fisiologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas de Ciclo Celular , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/biossíntese , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Neoplasias Pancreáticas/tratamento farmacológico , Interferência de RNA , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transfecção , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA