Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 378(6619): 557-560, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378964

RESUMO

Long-distance quantum communication and networking require quantum memory nodes with efficient optical interfaces and long memory times. We report the realization of an integrated two-qubit network node based on silicon-vacancy centers (SiVs) in diamond nanophotonic cavities. Our qubit register consists of the SiV electron spin acting as a communication qubit and the strongly coupled silicon-29 nuclear spin acting as a memory qubit with a quantum memory time exceeding 2 seconds. By using a highly strained SiV, we realize electron-photon entangling gates at temperatures up to 1.5 kelvin and nucleus-photon entangling gates up to 4.3 kelvin. We also demonstrate efficient error detection in nuclear spin-photon gates by using the electron spin as a flag qubit, making this platform a promising candidate for scalable quantum repeaters.

2.
Nature ; 580(7801): 60-64, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238931

RESUMO

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering1. Although some applications of quantum communication such as secure quantum key distribution2,3 are already being successfully deployed4-7, their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security8. Alternatively, quantum repeaters9, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge10-16, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator17-19 to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks20,21.

3.
Phys Rev Lett ; 123(18): 183602, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763904

RESUMO

Quantum networks require functional nodes consisting of stationary registers with the capability of high-fidelity quantum processing and storage, which efficiently interface with photons propagating in an optical fiber. We report a significant step towards realization of such nodes using a diamond nanocavity with an embedded silicon-vacancy (SiV) color center and a proximal nuclear spin. Specifically, we show that efficient SiV-cavity coupling (with cooperativity C>30) provides a nearly deterministic interface between photons and the electron spin memory, featuring coherence times exceeding 1 ms. Employing coherent microwave control, we demonstrate heralded single photon storage in the long-lived spin memory as well as a universal control over a cavity-coupled two-qubit register consisting of a SiV and a proximal ^{13}C nuclear spin with nearly second-long coherence time, laying the groundwork for implementing quantum repeaters.

4.
Science ; 362(6415): 662-665, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237247

RESUMO

Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically mediated interactions. Such controlled interactions will be crucial in developing cavity-mediated quantum gates between spin qubits and for realizing scalable quantum network nodes.

5.
Phys Rev Lett ; 119(22): 223602, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286819

RESUMO

The negatively charged silicon-vacancy (SiV^{-}) color center in diamond has recently emerged as a promising system for quantum photonics. Its symmetry-protected optical transitions enable the creation of indistinguishable emitter arrays and deterministic coupling to nanophotonic devices. Despite this, the longest coherence time associated with its electronic spin achieved to date (∼250 ns) has been limited by coupling to acoustic phonons. We demonstrate coherent control and suppression of phonon-induced dephasing of the SiV^{-} electronic spin coherence by 5 orders of magnitude by operating at temperatures below 500 mK. By aligning the magnetic field along the SiV^{-} symmetry axis, we demonstrate spin-conserving optical transitions and single-shot readout of the SiV^{-} spin with 89% fidelity. Coherent control of the SiV^{-} spin with microwave fields is used to demonstrate a spin coherence time T_{2} of 13 ms and a spin relaxation time T_{1} exceeding 1 s at 100 mK. These results establish the SiV^{-} as a promising solid-state candidate for the realization of quantum networks.

6.
Phys Rev Lett ; 118(22): 223603, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621982

RESUMO

We demonstrate a quantum nanophotonics platform based on germanium-vacancy (GeV) color centers in fiber-coupled diamond nanophotonic waveguides. We show that GeV optical transitions have a high quantum efficiency and are nearly lifetime broadened in such nanophotonic structures. These properties yield an efficient interface between waveguide photons and a single GeV center without the use of a cavity or slow-light waveguide. As a result, a single GeV center reduces waveguide transmission by 18±1% on resonance in a single pass. We use a nanophotonic interferometer to perform homodyne detection of GeV resonance fluorescence. By probing the photon statistics of the output field, we demonstrate that the GeV-waveguide system is nonlinear at the single-photon level.

7.
Science ; 354(6314): 847-850, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27738014

RESUMO

Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe optical switching at the single-photon level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe a quantum interference effect resulting from the superradiant emission of two entangled SiV centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA