Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 81(6): 1160-1169.e5, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33503406

RESUMO

Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.


Assuntos
Modelos Moleculares , Tamoxifeno/química , Canais de Sódio Disparados por Voltagem/química , Células HEK293 , Humanos
2.
Elife ; 92020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089780

RESUMO

Voltage-gated sodium channels are targets for a range of pharmaceutical drugs developed for the treatment of neurological diseases. Cannabidiol (CBD), the non-psychoactive compound isolated from cannabis plants, was recently approved for treatment of two types of epilepsy associated with sodium channel mutations. This study used high-resolution X-ray crystallography to demonstrate the detailed nature of the interactions between CBD and the NavMs voltage-gated sodium channel, and electrophysiology to show the functional effects of binding CBD to these channels. CBD binds at a novel site at the interface of the fenestrations and the central hydrophobic cavity of the channel. Binding at this site blocks the transmembrane-spanning sodium ion translocation pathway, providing a molecular mechanism for channel inhibition. Modelling studies suggest why the closely-related psychoactive compound tetrahydrocannabinol may not have the same effects on these channels. Finally, comparisons are made with the TRPV2 channel, also recently proposed as a target site for CBD. In summary, this study provides novel insight into a possible mechanism for CBD interactions with sodium channels.


Assuntos
Canabidiol/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Sítios de Ligação , Canabidiol/farmacologia , Cristalografia por Raios X , Eletrofisiologia , Conformação Proteica , Alinhamento de Sequência , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
3.
Commun Chem ; 3(1): 170, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36703392

RESUMO

The 1-aryl-tetrahydroisoquinoline (1-aryl-THIQ) moiety is found in many biologically active molecules. Single enantiomer chemical syntheses are challenging and although some biocatalytic routes have been reported, the substrate scope is limited to certain structural motifs. The enzyme norcoclaurine synthase (NCS), involved in plant alkaloid biosynthesis, has been shown to perform stereoselective Pictet-Spengler reactions between dopamine and several carbonyl substrates. Here, benzaldehydes are explored as substrates and found to be accepted by both wild-type and mutant constructs of NCS. In particular, the variant M97V gives a range of (1 S)-aryl-THIQs in high yields (48-99%) and e.e.s (79-95%). A co-crystallised structure of the M97V variant with an active site reaction intermediate analogue is also obtained with the ligand in a pre-cyclisation conformation, consistent with (1 S)-THIQs formation. Selected THIQs are then used with catechol O-methyltransferases with exceptional regioselectivity. This work demonstrates valuable biocatalytic approaches to a range of (1 S)-THIQs.

4.
Proc Natl Acad Sci U S A ; 116(52): 26549-26554, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822620

RESUMO

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

5.
Biochem Soc Trans ; 46(6): 1567-1575, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30381338

RESUMO

Voltage-gated sodium channels (Navs) are responsible for the initiation of the action potential in excitable cells. Several prokaryotic sodium channels, most notably NavMs from Magnetococcus marinus and NavAb from Arcobacter butzleri, have been shown to be good models for human sodium channels based on their sequence homologies and high levels of functional similarities, including ion flux, and functional consequences of critical mutations. The complete full-length crystal structures of these prokaryotic sodium channels captured in different functional states have now revealed the molecular natures of changes associated with the gating process. These include the structures of the intracellular gate, the selectivity filter, the voltage sensors, the intra-membrane fenestrations, and the transmembrane (TM) pore. Here we have identified for the first time how changes in the fenestrations in the hydrophobic TM region associated with the opening of the intracellular gate could modulate the state-dependent ingress and binding of drugs in the TM cavity, in a way that could be exploited for rational drug design.


Assuntos
Cristalografia por Raios X/métodos , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 115(26): 6691-6696, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891712

RESUMO

Strong interactions between lipids and proteins occur primarily through association of charged headgroups and amino acid side chains, rendering the protonation status of both partners important. Here we use native mass spectrometry to explore lipid binding as a function of charge of the outer membrane porin F (OmpF). We find that binding of anionic phosphatidylglycerol (POPG) or zwitterionic phosphatidylcholine (POPC) to OmpF is sensitive to electrospray polarity while the effects of charge are less pronounced for other proteins in outer or mitochondrial membranes: the ferripyoverdine receptor (FpvA) or the voltage-dependent anion channel (VDAC). Only marginal charge-induced differences were observed for inner membrane proteins: the ammonia channel (AmtB) or the mechanosensitive channel. To understand these different sensitivities, we performed an extensive bioinformatics analysis of membrane protein structures and found that OmpF, and to a lesser extent FpvA and VDAC, have atypically high local densities of basic and acidic residues in their lipid headgroup-binding regions. Coarse-grained molecular dynamics simulations, in mixed lipid bilayers, further implicate changes in charge by demonstrating preferential binding of anionic POPG over zwitterionic POPC to protonated OmpF, an effect not observed to the same extent for AmtB. Moreover, electrophysiology and mass-spectrometry-based ligand-binding experiments, at low pH, show that POPG can maintain OmpF channels in open conformations for extended time periods. Since the outer membrane is composed almost entirely of anionic lipopolysaccharide, with similar headgroup properties to POPG, such anionic lipid binding could prevent closure of OmpF channels, thereby increasing access of antibiotics that use porin-mediated pathways.


Assuntos
Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Porinas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Porinas/química , Ligação Proteica , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
7.
Biopolymers ; 109(8): e23067, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28925040

RESUMO

Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage-gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo-electron microscopy structure determinations.


Assuntos
Proteínas de Bactérias/química , Canais de Sódio Disparados por Voltagem/química , Cristalografia por Raios X , Domínios Proteicos
8.
Biochemistry ; 56(40): 5274-5277, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28915025

RESUMO

Norcoclaurine synthase (NCS) is a Pictet-Spenglerase that catalyzes the first key step in plant benzylisoquinoline alkaloid metabolism, a compound family that includes bioactive natural products such as morphine. The enzyme has also shown great potential as a biocatalyst for the formation of chiral isoquinolines. Here we present new high-resolution X-ray crystallography data describing Thalictrum flavum NCS bound to a mechanism-inspired ligand. The structure supports two key features of the NCS "dopamine-first" mechanism: the binding of dopamine catechol to Lys-122 and the position of the carbonyl substrate binding site at the active site entrance. The catalytically vital residue Glu-110 occupies a previously unobserved ligand-bound conformation that may be catalytically significant. The potential roles of inhibitory binding and alternative amino acid conformations in the mechanism have also been revealed. This work significantly advances our understanding of the NCS mechanism and will aid future efforts to engineer the substrate scope and catalytic properties of this useful biocatalyst.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Dopamina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Thalictrum/enzimologia
9.
J Gen Physiol ; 149(6): 613-622, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28522439

RESUMO

Voltage-gated sodium channels enable the translocation of sodium ions across cell membranes and play crucial roles in electrical signaling by initiating the action potential. In humans, mutations in sodium channels give rise to several neurological and cardiovascular diseases, and hence they are targets for pharmaceutical drug developments. Prokaryotic sodium channel crystal structures have provided detailed views of sodium channels, which by homology have suggested potentially important functionally related structural features in human sodium channels. A new crystal structure of a full-length prokaryotic channel, NavMs, in a conformation we proposed to represent the open, activated state, has revealed a novel interaction motif associated with channel opening. This motif is associated with disease when mutated in human sodium channels and plays an important and dynamic role in our new model for channel activation.


Assuntos
Proteínas de Bactérias/química , Canais de Sódio Disparados por Voltagem/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Ligação Proteica , Domínios Proteicos , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Nat Commun ; 8: 14205, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205548

RESUMO

Voltage-gated sodium channels (Navs) play essential roles in excitable tissues, with their activation and opening resulting in the initial phase of the action potential. The cycling of Navs through open, closed and inactivated states, and their closely choreographed relationships with the activities of other ion channels lead to exquisite control of intracellular ion concentrations in both prokaryotes and eukaryotes. Here we present the 2.45 Å resolution crystal structure of the complete NavMs prokaryotic sodium channel in a fully open conformation. A canonical activated conformation of the voltage sensor S4 helix, an open selectivity filter leading to an open activation gate at the intracellular membrane surface and the intracellular C-terminal domain are visible in the structure. It includes a heretofore unseen interaction motif between W77 of S3, the S4-S5 interdomain linker, and the C-terminus, which is associated with regulation of opening and closing of the intracellular gate.


Assuntos
Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/fisiologia , Sequência de Aminoácidos , Eletrofisiologia , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/fisiologia , Cinética , Modelos Moleculares , Mutação , Células Procarióticas/química , Células Procarióticas/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/genética , Difração de Raios X
11.
Sci Rep ; 6: 38426, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941820

RESUMO

Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical 'pore-only' proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.


Assuntos
Canais de Cálcio/metabolismo , Sequência de Aminoácidos , Canais de Cálcio/química , Sobrevivência Celular , Células HeLa , Humanos
12.
EMBO J ; 35(8): 820-30, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26873592

RESUMO

Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na(+) ≈ Li(+) â‰« K(+), Ca(2+), Mg(2+)) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones.


Assuntos
Canais de Sódio/química , Canais de Sódio/metabolismo , Sódio/metabolismo , Alphaproteobacteria/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cátions/metabolismo , Cristalografia por Raios X , Ácido Glutâmico/genética , Células HEK293 , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Mutação , Técnicas de Patch-Clamp , Permeabilidade , Conformação Proteica , Canais de Sódio/genética , Eletricidade Estática
13.
FEBS J ; 282(6): 1137-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25620686

RESUMO

Norcoclaurine synthase (NCS) (EC 4.2.1.78) catalyzes the Pictet-Spengler condensation of dopamine and an aldehyde, forming a substituted (S)-tetrahydroisoquinoline, a pharmaceutically important moiety. This unique activity has led to NCS being used for both in vitro biocatalysis and in vivo recombinant metabolism. Future engineering of NCS activity to enable the synthesis of diverse tetrahydroisoquinolines is dependent on an understanding of the NCS mechanism and kinetics. We assess two proposed mechanisms for NCS activity: (a) one based on the holo X-ray crystal structure and (b) the 'dopamine-first' mechanism based on computational docking. Thalictrum flavum NCS variant activities support the dopamine-first mechanism. Suppression of the non-enzymatic background reaction reveals novel kinetic parameters for NCS, showing it to act with low catalytic efficiency. This kinetic behaviour can account for the ineffectiveness of recombinant NCS in in vivo systems, and also suggests NCS may have an in planta role as a metabolic gatekeeper. The amino acid substitution L76A, situated in the proposed aldehyde binding site, results in the alteration of the enzyme's aldehyde activity profile. This both verifies the dopamine-first mechanism and demonstrates the potential for the rational engineering of NCS activity.


Assuntos
Aldeídos/química , Alcaloides/química , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/síntese química , Dopamina/química , Engenharia de Proteínas/métodos , Catálise , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Temperatura , Thalictrum/metabolismo
14.
BMC Struct Biol ; 14: 3, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438169

RESUMO

BACKGROUND: Mutations in dysferlin, the first protein linked with the cell membrane repair mechanism, causes a group of muscular dystrophies called dysferlinopathies. Dysferlin is a type two-anchored membrane protein, with a single C terminal trans-membrane helix, and most of the protein lying in cytoplasm. Dysferlin contains several C2 domains and two DysF domains which are nested one inside the other. Many pathogenic point mutations fall in the DysF domain region. RESULTS: We describe the crystal structure of the human dysferlin inner DysF domain with a resolution of 1.9 Ångstroms. Most of the pathogenic mutations are part of aromatic/arginine stacks that hold the domain in a folded conformation. The high resolution of the structure show that these interactions are a mixture of parallel ring/guanadinium stacking, perpendicular H bond stacking and aliphatic chain packing. CONCLUSIONS: The high resolution structure of the Dysferlin DysF domain gives a template on which to interpret in detail the pathogenic mutations that lead to disease.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Arginina/metabolismo , Cristalografia por Raios X , Disferlina , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA