Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 787527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237508

RESUMO

The article reviews and benchmarks machine learning methods for automatic image-based plant species recognition and proposes a novel retrieval-based method for recognition by nearest neighbor classification in a deep embedding space. The image retrieval method relies on a model trained via the Recall@k surrogate loss. State-of-the-art approaches to image classification, based on Convolutional Neural Networks (CNN) and Vision Transformers (ViT), are benchmarked and compared with the proposed image retrieval-based method. The impact of performance-enhancing techniques, e.g., class prior adaptation, image augmentations, learning rate scheduling, and loss functions, is studied. The evaluation is carried out on the PlantCLEF 2017, the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets-the largest publicly available datasets for plant recognition. The evaluation of CNN and ViT classifiers shows a gradual improvement in classification accuracy. The current state-of-the-art Vision Transformer model, ViT-Large/16, achieves 91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF 2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate dropped by 22.91% and 28.34%. Apart from that, additional tricks increased the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018 and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior performance in all measured scenarios with accuracy margins of 0.28%, 4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018-Plantae, respectively.

2.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35062595

RESUMO

The article presents an AI-based fungi species recognition system for a citizen-science community. The system's real-time identification too - FungiVision - with a mobile application front-end, led to increased public interest in fungi, quadrupling the number of citizens collecting data. FungiVision, deployed with a human-in-the-loop, reaches nearly 93% accuracy. Using the collected data, we developed a novel fine-grained classification dataset - Danish Fungi 2020 (DF20) - with several unique characteristics: species-level labels, a small number of errors, and rich observation metadata. The dataset enables the testing of the ability to improve classification using metadata, e.g., time, location, habitat and substrate, facilitates classifier calibration testing and finally allows the study of the impact of the device settings on the classification performance. The continual flow of labelled data supports improvements of the online recognition system. Finally, we present a novel method for the fungi recognition service, based on a Vision Transformer architecture. Trained on DF20 and exploiting available metadata, it achieves a recognition error that is 46.75% lower than the current system. By providing a stream of labeled data in one direction, and an accuracy increase in the other, the collaboration creates a virtuous cycle helping both communities.


Assuntos
Aprendizado Profundo , Aplicativos Móveis , Fungos , Humanos , Micologia , Redes Neurais de Computação
3.
Plant Methods ; 13: 115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29299049

RESUMO

BACKGROUND: Fine-grained recognition of plants from images is a challenging computer vision task, due to the diverse appearance and complex structure of plants, high intra-class variability and small inter-class differences. We review the state-of-the-art and discuss plant recognition tasks, from identification of plants from specific plant organs to general plant recognition "in the wild". RESULTS: We propose texture analysis and deep learning methods for different plant recognition tasks. The methods are evaluated and compared them to the state-of-the-art. Texture analysis is only applied to images with unambiguous segmentation (bark and leaf recognition), whereas CNNs are only applied when sufficiently large datasets are available. The results provide an insight in the complexity of different plant recognition tasks. The proposed methods outperform the state-of-the-art in leaf and bark classification and achieve very competitive results in plant recognition "in the wild". CONCLUSIONS: The results suggest that recognition of segmented leaves is practically a solved problem, when high volumes of training data are available. The generality and higher capacity of state-of-the-art CNNs makes them suitable for plant recognition "in the wild" where the views on plant organs or plants vary significantly and the difficulty is increased by occlusions and background clutter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA