RESUMO
Ceramic matrix composites (CMCs) have played a significant role in increasing the efficiency of gas turbine engines. CMCs combine the high temperature resistance of ceramics with the high mechanical strength of ceramic fibers into a single unit. Interphase layers are a crucial component in CMCs, as they prevent ceramic fibers from oxidation and introduce strengthening mechanisms into the composite. Hexagonal boron nitride and pyrolytic carbon are the most commonly used interphase layers in the aerospace industry. Other than that, very few materials have been evaluated as interphase layers. In this study, we explore the possibilities of using titanium nitride as an interphase layer in single-tow CMCs (mini composite) representative of a unidirectional composite at a smaller scale. T-300 carbon fibers were coated with TiN by atmospheric pressure chemical vapor infiltration using TiCl4, N2, and H2. The deposition temperature, precursor flow rate ratio, total precursor flow rate, and deposition time were optimized to obtain high-quality coatings. The best coating was produced at 800 °C, 4:1 H2 [TiCl4]/N2 ratio, 125 standard cubic centimeters per minute (N2 + H2 [TiCl4]) total flow precursor flow rate, and 2 h of deposition time. At these conditions, the coatings displayed good fiber coverage, good fiber adhesion, minimum fiber linkage, and minimum surface roughness. There was minimum fiber degradation after TiN coating, with a retention of 95% of the initial Young's modulus and 26% of the ultimate tensile strength of the carbon fiber. Adding the TiN interphase coating to the Cf/SiC CMC increased the ultimate tensile strength of the composite by 1122% and Young's modulus by 150%.
RESUMO
Acquiring detailed 3D images of samples is needed for conducting thorough investigations in a wide range of applications. Doing so using nondestructive methods such as X-ray computed tomography (X-ray CT) has resolution limitations. Destructive methods, which work based on consecutive delayering and imaging of the sample, face a tradeoff between throughput and resolution. Using focused ion beam (FIB) for delayering, although high precision, is low throughput. On the other hand, mechanical methods that can offer fast delayering, are low precision and may put the sample integrity at risk. Herein, we propose to use femtosecond laser ablation as a delayering method in combination with optical and confocal microscopy as the imaging technique for performing rapid 3D imaging. The use of confocal microscopy provides several advantages. First, it eliminates the 3D image distortion resulting from non-flat layers, caused by the difference in laser ablation rate of different materials. It further allows layer height variations to be maintained within a small range. Finally, it enables material characterization based on the processing of material ablation rate at different locations. The proposed method is applied on a printed circuit board (PCB), and the results are validated and compared with the X-ray CT image of the PCB part.