Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Clin Pathol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767053

RESUMO

OBJECTIVES: To determine whether the information provided by short tandem repeat (STR) testing and bone marrow (BM) biopsy specimens following hematopoietic stem cell transplant (HSCT) provides redundant information, leading to test overutilization, without additional clinical benefit. METHODS: Cases with synchronous STR and flow cytometric immunophenotyping (FCI) testing, as part of the BM evaluation, were assessed for STR/FCI concordance. RESULTS: Of 1199 cases (410 patients), we found the overall concordance between STR and FCI was 93%, with most cases (1063) classified as STR-/FCI-. Of all discordant cases, 75 (6%) were STR+/FCI-, with only 5 (6.7%) cases best explained as identification of disease relapse. Eight cases were STR-/FCI+, representing relapsed/residual disease. Analysis of cases 1 year or more from transplant (54% of all cases) indicated only 9 (1.5%) were STR+/FCI-, and none uniquely identified relapse. CONCLUSIONS: These data suggest that STR analysis performed 1 year or more post-HSCT does not identify unknown cases of relapse. Furthermore, while STR testing is critical for identifying graft failure/rejection within the first year posttransplant, FCI appears superior to STR at detecting late relapses with low-level disease. Therefore, STR testing from patients 1 year or more post-HSCT may be unnecessary, as BM biopsy evaluation is sufficient to identify disease relapse.

2.
Transplantation ; 107(10): e273, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749816
3.
Transfusion ; 61(4): 1029-1034, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33231313

RESUMO

BACKGROUND: Recent data suggests an association between blood hyperviscosity and both propensity for thrombosis and disease severity in patients with COVID-19. This raises the possibility that increased viscosity may contribute to endothelial damage and multiorgan failure in COVID-19, and that therapeutic plasma exchange (TPE) to decrease viscosity may improve patient outcomes. Here we sought to share our experience using TPE in the first 6 patients treated for COVID-19-associated hyperviscosity. STUDY DESIGN AND METHODS: Six critically ill COVID-19 patients with plasma viscosity levels ranging from 2.6 to 4.2 centipoise (cP; normal range, 1.4-1.8 cP) underwent daily TPE for 2-3 treatments. RESULTS: TPE decreased plasma viscosity in all six patients (Pre-TPE median 3.75 cP, range 2.6-4.2 cP; Post-TPE median 1.6 cP, range 1.5-1.9 cP). TPE also decreased fibrinogen levels in all five patients for whom results were available (Pre-TPE median 739 mg/dL, range 601-1188 mg/dL; Post-TPE median 359 mg/dL, range 235-461 mg/dL); D-dimer levels in all six patients (Pre-TPE median 5921 ng/mL, range 1134-60 000 ng/mL; Post-TPE median 4893 ng/mL, range 620-7518 ng/mL); and CRP levels in five of six patients (Pre-TPE median 292 mg/L, range 136-329 mg/L; Post-TPE median 84 mg/L, range 31-211 mg/L). While the two sickest patients died, significant improvement in clinical status was observed in four of six patients shortly after TPE. CONCLUSIONS: This series demonstrates the utility of TPE to rapidly correct increased blood viscosity in patients with COVID-19-associated hyperviscosity. Large randomized trials are needed to determine whether TPE may improve clinical outcomes for patients with COVID-19.


Assuntos
Viscosidade Sanguínea , COVID-19 , Troca Plasmática , SARS-CoV-2/metabolismo , Adulto , Idoso , COVID-19/sangue , COVID-19/terapia , Humanos , Masculino , Pessoa de Meia-Idade
4.
Hum Immunol ; 81(8): 430-436, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32684412

RESUMO

In November 2014, the OPTN/UNOS Board of Directors mandated that HLA-DPB1 typing be performed for all deceased donors. Currently, there are over 1,000 known HLA DPB1 alleles, yet fewer than 30 are represented on commonly used single antigen bead (SAB) solid phase antibody assays. Moreover, the official World Health Organization (WHO) nomenclature for the DPB1 locus does not permit assessment of structural relationships between alleles based on their names. Thus, for donor DPB1 alleles lacking a corresponding SAB, determining the compatibility between a donor-recipient pair when the recipient possesses DPB1 antibodies currently requires the use of manual sequence alignments. Multiple studies have reported that DPB1 alleles can be classified into serological-defined categories based on shared protein sequence motifs residing in distinct hypervariable regions. To date, six such motifs have been recognized. To address this problem, we developed a computer-assisted tool to compare donor and recipient DPB1 allele sequences, specifically those defined by DPB1 hypervariable region motifs located in exon 2 (http://dpreport.hlatools.org). This tool quickly identifies mismatched DPB1 motifs, and easily permits the identification of motif-based donor-specific antibodies (DSA) to DPB1.


Assuntos
Éxons/genética , Cadeias beta de HLA-DP/genética , Polimorfismo Genético/genética , Alelos , Sequência de Aminoácidos , Eletrônica/métodos , Teste de Histocompatibilidade/métodos , Humanos , Doadores de Tecidos
5.
J Mol Diagn ; 18(2): 299-315, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26801070

RESUMO

We tested and clinically validated a targeted next-generation sequencing (NGS) mutation panel using 80 formalin-fixed, paraffin-embedded (FFPE) tumor samples. Forty non-small cell lung carcinoma (NSCLC), 30 melanoma, and 30 gastrointestinal (12 colonic, 10 gastric, and 8 pancreatic adenocarcinoma) FFPE samples were selected from laboratory archives. After appropriate specimen and nucleic acid quality control, 80 NGS libraries were prepared using the Illumina TruSight tumor (TST) kit and sequenced on the Illumina MiSeq. Sequence alignment, variant calling, and sequencing quality control were performed using vendor software and laboratory-developed analysis workflows. TST generated ≥500× coverage for 98.4% of the 13,952 targeted bases. Reproducible and accurate variant calling was achieved at ≥5% variant allele frequency with 8 to 12 multiplexed samples per MiSeq flow cell. TST detected 112 variants overall, and confirmed all known single-nucleotide variants (n = 27), deletions (n = 5), insertions (n = 3), and multinucleotide variants (n = 3). TST detected at least one variant in 85.0% (68/80), and two or more variants in 36.2% (29/80), of samples. TP53 was the most frequently mutated gene in NSCLC (13 variants; 13/32 samples), gastrointestinal malignancies (15 variants; 13/25 samples), and overall (30 variants; 28/80 samples). BRAF mutations were most common in melanoma (nine variants; 9/23 samples). Clinically relevant NGS data can be obtained from routine clinical FFPE solid tumor specimens using TST, benchtop instruments, and vendor-supplied bioinformatics pipelines.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Gastrointestinais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Melanoma/genética , Receptores ErbB/genética , Humanos , Hibridização in Situ Fluorescente , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/normas , Mutação , Inclusão em Parafina , Controle de Qualidade , Receptor ErbB-2/genética , Sensibilidade e Especificidade , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA