RESUMO
Understanding dispersal potential, or the probability a species will move a given distance, under different environmental conditions is essential to predicting species' ability to move across the landscape and track shifting ecological niches. Two important drivers of dispersal ability are climatic differences and variations in local habitat type. Despite the likelihood these global drivers act simultaneously on plant populations, and thus dispersal potential is likely to change as a result, their combined effects on dispersal are rarely examined. To understand the effect of climate and varying habitat types on dispersal potential, we studied Geum triflorum-a perennial grassland species that spans a wide range of environments, including both prairie and alvar habitats. We explored how the climate of the growing season and habitat type (prairie vs. alvar) interact to alter dispersal potential. We found a consistent interactive effect of climate and habitat type on dispersal potential. Across prairie populations, an increased number of growing degree days favored traits that increase dispersal potential or the probability of dispersing farther distances. However, for alvar populations, dispersal potential tended to decrease as the number of growing degree days increased. Our findings suggest that under continued warming, populations in prairie habitats will benefit from increased gene flow, while alvar populations will become increasingly segregated, with reduced potential to track shifting fitness optima.
RESUMO
Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.
Assuntos
Pradaria , Herbivoria , Animais , Banco de Sementes , Solo , Plantas , Nutrientes , Ecossistema , MamíferosRESUMO
Herbivores shape plant invasions through impacts on demography and dispersal, yet only demographic mechanisms are well understood. Although herbivores negatively impact demography by definition, they can affect dispersal either negatively (e.g., seed consumption), or positively (e.g., caching). Exploring the nuances of how herbivores influence spatial spread will improve the forecasting of plant movement on the landscape. Here, we aim to understand how herbivores impact how fast plant populations spread through varying impacts on plant demography and dispersal. We strive to determine whether, and under what conditions, we see net positive effects of herbivores, in order to find scenarios where herbivores can help to promote spread. We draw on classic invasion theory to develop a stage-structured integrodifference equation model that incorporates herbivore impacts on plant demography and dispersal. We simulate seven herbivore "syndromes" (combinations of demographic and/or dispersal effects) drawn from the literature to understand how increasing herbivore pressure alters plant spreading speed. We find that herbivores with solely negative effects on plant demography or dispersal always slow plant spreading speed, and that the speed slows monotonically as herbivore pressure increases. However, we also find that plant spreading speed can be hump shaped with respect to herbivore pressure: plants spread faster in the presence of herbivores (for low herbivore pressure) and then slower (for high herbivore pressure). This result is robust, occurring across all syndromes in which herbivores have a positive effect on plant dispersal, and is a sign that the positive effects of herbivores on dispersal can outweigh their negative effects on demography. For all syndromes we find that sufficiently high herbivore pressure results in population collapse. Thus, our findings show that herbivores can speed up or slow down plant spread. These insights allow for a greater understanding of how to slow invasions, facilitate native species recolonization, and shape range shifts with global change.
Assuntos
Herbivoria , Plantas , SementesRESUMO
Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long-term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long-term (22-year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as ß diversity change through transient and equilibrium states.
Assuntos
Pradaria , Nutrientes , Nitrogênio , EcossistemaRESUMO
Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.
Assuntos
Biodiversidade , Ecossistema , Plantas , Causalidade , BiomassaRESUMO
Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ. We address this gap in natural populations of the self-incompatible native dandelion, Taraxacum ceratophorum, where selfing only occurs in association with hybridization from exotic Taraxacum officinale. We tested whether self-fertilization rate increases in the hybrid zone, as predicted due to the mentor effect. Using results from these investigations, we created an exponential growth model to estimate the potential demographic impacts of the mentor effect on T. ceratophorum population growth. Our results demonstrate that the strength of the mentor effect in Taraxacum depends on the prevalence of pollinator-mediated outcross pollen deposition rather than self-pollination. Demographic models suggest that reduced outcrossing in T. ceratophorum under exotic invasion could negatively impact population growth through inbreeding depression. We demonstrate the mentor effect is rare in natural populations of T. ceratophorum due to masking by early life cycle inbreeding depression, prevalent outcrossing, and ovule usurpation by heterospecific pollen.
Assuntos
Flores , Mentores , Humanos , Reprodução , Polinização , DemografiaRESUMO
Dispersal is a key process in community assembly but is often considered separately from downstream assembly processes (e.g., competition, herbivory). However, dispersal varies by species and can interact with other assembly processes through establishment as species enter communities. Here, we sought to distinguish the role of dispersal in community assembly and its interaction with two biotic assembly processes: competition and herbivory. We used a tallgrass prairie restoration experiment that manipulated the competitive and herbivore environments while allowing for natural dispersal and establishment from a diverse regional species pool into areas of low diversity. Dispersal, competition, and herbivory all influenced local communities. By tracking the spread of four target species across the plots, we found interspecific and intraspecific differences in establishment patterns, with herbivores influencing the number of individuals present and the distances species moved. At the community level, only dispersal and competition significantly influenced alpha diversity, but all three processes additively influenced community composition. There was also evidence of herbivore-competition and herbivore-colonization trade-offs in our experiment. Some species that could tolerate herbivory were less likely to establish in competitive environments, while others that could tolerate herbivory were more likely to disperse greater distances. More work is needed to understand the contexts under which dispersal variation affects community assembly and its synergy with other processes.
Assuntos
Herbivoria , Plantas , HumanosRESUMO
The integration of theory and data drives progress in science, but a persistent barrier to such integration in ecology and evolutionary biology is that theory is often developed and expressed in the form of mathematical models that can feel daunting and inaccessible for students and empiricists with variable quantitative training and attitudes towards math. A promising way to make mathematical models more approachable is to embed them into interactive tools with which one can visually evaluate model structures and directly explore model outcomes through simulation. To promote such interactive learning of quantitative models, we developed EcoEvoApps, a collection of free, open-source, and multilingual R/Shiny apps that include model overviews, interactive model simulations, and code to implement these models directly in R. The package currently focuses on canonical models of population dynamics, species interactions, and landscape ecology. These apps help illustrate fundamental results from theoretical ecology and can serve as valuable teaching tools in classroom settings. We present data from student surveys which show that students rate these apps as useful learning tools, and that using interactive apps leads to substantial gains in students' interest and confidence in working with mathematical models. This points to the potential for interactive activities to make theoretical models more accessible to a wider audience, and thus facilitate the feedback between theory and data across ecology and evolutionary biology.
RESUMO
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.
Consecuencias de la Omisión de la Variación en la Dispersión en los Modelos de Redes para la Conectividad de Paisajes Resumen La pérdida y la fragmentación del hábitat pueden influir negativamente la persistencia de poblaciones y biodiversidad. Sin embargo, estos efectos pueden ser mitigados si las especies tienen una dispersión exitosa entre los fragmentos aislados de hábitat. Los modelos de redes son la herramienta principal para la cuantificación de la conectividad del paisaje, no obstante en la práctica, se tiende a usar una visión excesivamente simplista de la dispersión de especies. Es común que estos modelos ignoren la variación que existe entre individuos en sus habilidades de dispersión y que asuman que todos los individuos se pueden mover la misma distancia y con la misma probabilidad. En este estudio, desarrollamos una estrategia de modelaje para (minimizar o aminorar) estas limitaciones incorporando kernels de dispersión dentro de los modelos de redes para determinar cómo la variación individual de la dispersión altera el entendimiento de la conectividad a nivel de paisaje. Como un ejemplo, implementamos esta estrategia en un paisaje de pastizal fragmentado en Minnesota. Omitir la variación en la dispersión generó una sobreestimación sistemática de la robustez de la población ante las extinciones locales y una subestimación de la robustez ante la pérdida local del hábitat. Además, una visión simplificada de la dispersión subestimó la complejidad de hábitat para las poblaciones pequeñas, sin emgargo sobreestimó la complejidad para las poblaciones grandes. Nuestros resultados demuestran que incorporar parámetros que describan una dispersión biológica realista tiene implicaciones importantes en la teoría de conectividad de paisajes e implementación de practicas de conservación.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , HumanosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Most of the classical theory on species coexistence has been based on species-level competitive trade-offs. However, it is becoming apparent that plant species display high levels of trait plasticity. The implications of this plasticity are almost completely unknown for most coexistence theory. Here, we model a competition-colonisation trade-off and incorporate trait plasticity to evaluate its effects on coexistence. Our simulations show that the classic competition-colonisation trade-off is highly sensitive to environmental circumstances, and coexistence only occurs in narrow ranges of conditions. The inclusion of plasticity, which allows shifts in competitive hierarchies across the landscape, leads to coexistence across a much broader range of competitive and environmental conditions including disturbance levels, the magnitude of competitive differences between species, and landscape spatial patterning. Plasticity also increases the number of species that persist in simulations of multispecies assemblages. Plasticity may generally increase the robustness of coexistence mechanisms and be an important component of scaling coexistence theory to higher diversity communities.
Assuntos
Ecossistema , Plantas , Modelos Biológicos , FenótipoRESUMO
Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.
Assuntos
Ecossistema , Modelos Teóricos , Ecologia , Modelos Biológicos , Dinâmica Populacional , Processos EstocásticosRESUMO
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
RESUMO
Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)-a commonly measured morphological trait inferring shifts between plant growth strategies-did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands.
Assuntos
Pradaria , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Nutrientes/metabolismo , Folhas de Planta/anatomia & histologiaRESUMO
Species-level dispersal information can give mechanistic insights into how spatial processes impact plant communities. Unfortunately, field-based estimates of the dispersal abilities of multiple members of a community are often lacking for many plant systems. Here, we provide a simple method for measuring dispersal ability for large numbers of grassland plant species based on functional traits. Using this method, we estimated the dispersal ability of 50 co-occurring grassland species using the Wald Analytical Long-distance Dispersal (WALD) model. Grassland plants species are often used for developing community theory, yet species-level estimates of their dispersal abilities are comparatively rare. We use these dispersal measurements to examine the relationship between species dispersal abilities and successional dynamics using data from a 90-yr old field chronosequence. We find that our estimated dispersal measurements matched field-based establishment observations well, and estimated species colonization, competitive, and establishment abilities. We hope that this method for measuring dispersal ability of multiple species within a community, and its demonstrated ability to generate predictions for spatial ecology, will encourage more studies of the explicit role of dispersal in plant community ecology.
Assuntos
Ecologia , Dispersão de Sementes , PlantasRESUMO
Women are underrepresented in science, technology, engineering, and mathematics (STEM) disciplines. Evidence suggests the microclimate of the classroom is an important factor influencing female course grades and interest, which encourages retention of women in STEM fields. Here, we test whether the gender composition of small (8-9 person) learning groups impacts course performance, sense of social belonging, and intragroup peer evaluations of intellectual contributions. Across two undergraduate active learning courses in introductory biology, we manipulated the classroom microclimate by varying the gender ratios of learning groups, ranging from 0% female to 100% female. We found that as the percent of women in groups increased, so did overall course performance for all students, regardless of gender. Additionally, women assigned higher peer- evaluations in groups with more women than groups with less women. Our work demonstrates an added benefit of the retention of women in STEM: increased performance for all, and positive peer perceptions for women.
Assuntos
Biologia/educação , Avaliação Educacional , Grupo Associado , Razão de Masculinidade , Análise e Desempenho de Tarefas , Feminino , Humanos , Masculino , Aprendizagem Baseada em Problemas , Autoavaliação (Psicologia)RESUMO
Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.