Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 57(11): 4735-4753, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32780351

RESUMO

Elongation of very long chain fatty acids-4 (ELOVL4) is essential for synthesis of very long chain polyunsaturated and saturated fatty acids (VLC-PUFA and VLC-SFA, respectively) of chain length greater than 26 carbons. Mutations in the ELOVL4 gene cause several distinct neurodegenerative diseases including Stargardt-like macular dystrophy (STGD3), spinocerebellar ataxia 34 (SCA34), and a neuro-ichthyotic syndrome with severe seizures and spasticity, as well as erythrokeratitis variabilis (EKV), a skin disorder. However, the relationship between ELOVL4 mutations, its VLC-PUFA and VLC-SFA products, and specific neurological symptoms remains unclear. We generated a knock-in rat line (SCA34-KI) that expresses the 736T>G (p.W246G) form of ELOVL4 that causes human SCA34. Lipids were analyzed by gas chromatography and mass spectrometry. Retinal function was assessed using electroretinography. Retinal integrity was assessed by histology, optical coherence tomography, and immunolabeling. Analysis of retina and skin lipids showed that the W246G mutation selectively impaired synthesis of VLC-SFA, but not VLC-PUFA. Homozygous SCA34-KI rats showed reduced ERG a- and b-wave amplitudes by 90 days of age, particularly for scotopic responses. Anatomical analyses revealed no indication of neurodegeneration in heterozygote or homozygote SCA34-KI rats out to 6-7 months of age. These studies reveal a previously unrecognized role for VLC-SFA in regulating retinal function, particularly transmission from photoreceptors to the inner retina, in the absence of neurodegeneration. Furthermore, these findings suggest that the tissue specificity and symptoms associated with disease-causing ELOVL4 mutations likely arise from selective differences in the ability of the mutant ELOVL4 enzymes to support synthesis of VLC-PUFA and/or VLC-SFA.


Assuntos
Proteínas do Olho/genética , Proteínas de Membrana/genética , Mutação/genética , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/fisiopatologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Ácidos Graxos/metabolismo , Humanos , Visão Noturna , Fenótipo , Ratos , Ratos Transgênicos
2.
J Assist Reprod Genet ; 36(7): 1379-1385, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31073727

RESUMO

PURPOSE: To determine if levels of very long chain polyunsaturated fatty acids (VLC-PUFA; ≥ 28 carbons;4-6 double bonds) in human sperm correlate with sperm quantity and quality as determined by a complete semen analysis. METHODS: Ejaculates from 70 men underwent a complete semen analysis, which included volume, count, motility, progression, agglutination, viscosity, morphology, and pH. For lipid analysis, sperm were pelleted to remove the semen. Lipids were extracted from the cell pellet and methyl esters of total lipids analyzed by gas chromatography. The sphingolipids were enriched and sphingomyelin (SM) species measured using tandem mass spectrometry. Pair-wise Pearson correlation and linear regression analysis compared percent VLC-PUFA-SM and percent docosahexaenoic acid (DHA) to results from the semen analysis. RESULTS: VLC-PUFA-SM species having 28-34 carbon fatty acids were detected in sperm samples, with 28 and 30 carbon VLC-PUFA as most the abundant. The sum of all VLC-PUFA-SM species comprised 0 to 6.1% of the overall SM pool (mean 2.1%). Pair-wise Pearson analyses showed that lower levels of VLC-PUFA-SM positively correlated with lower total motile count (0.68) and lower total count (0.67). Total VLC-PUFA-SM and mole % DHA (22:6n3) were not strongly correlated (- 0.24). Linear regression analysis confirmed these findings. CONCLUSION: This study revealed a positive correlation between the levels of VLC-PUFA with sperm count and total motile count and suggests that both sperm quality and quantity may depend on the presence of VLC-PUFA. The lack of correlation between VLC-PUFA and DHA suggests that low VLC-PUFA levels do not result from inadequate PUFA precursors.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Esfingomielinas/metabolismo , Adolescente , Adulto , Ácidos Graxos Insaturados/genética , Fertilidade/genética , Humanos , Lipídeos/química , Lipídeos/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Análise do Sêmen , Contagem de Espermatozoides , Motilidade dos Espermatozoides/genética , Espermatozoides/patologia , Esfingomielinas/genética , Espectrometria de Massas em Tandem , Adulto Jovem
3.
Mol Neurobiol ; 55(2): 1795-1813, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29168048

RESUMO

Lipids are essential components of the nervous system. However, the functions of very long-chain fatty acids (VLC-FA; ≥ 28 carbons) in the brain are unknown. The enzyme ELOngation of Very Long-chain fatty acids-4 (ELOVL4) catalyzes the rate-limiting step in the biosynthesis of VLC-FA (Agbaga et al., Proc Natl Acad Sci USA 105(35): 12843-12848, 2008; Logan et al., J Lipid Res 55(4): 698-708, 2014), which we identified in the brain as saturated fatty acids (VLC-SFA). Homozygous mutations in ELOVL4 cause severe neuropathology in humans (Ozaki et al., JAMA Neurol 72(7): 797-805, 2015; Mir et al., BMC Med Genet 15: 25, 2014; Cadieux-Dion et al., JAMA Neurol 71(4): 470-475, 2014; Bourassa et al., JAMA Neurol 72(8): 942-943, 2015; Aldahmesh et al., Am J Hum Genet 89(6): 745-750, 2011) and are post-natal lethal in mice (Cameron et al., Int J Biol Sci 3(2): 111-119, 2007; Li et al., Int J Biol Sci 3(2): 120-128, 2007; McMahon et al., Molecular Vision 13: 258-272, 2007; Vasireddy et al., Hum Mol Genet 16(5): 471-482, 2007) from dehydration due to loss of VLC-SFA that comprise the skin permeability barrier. Double transgenic mice with homozygous knock-in of the Stargardt-like macular dystrophy (STDG3; 797-801_AACTT) mutation of Elovl4 with skin-specific rescue of wild-type Elovl4 expression (S + Elovl4 mut/mut mice) develop seizures by P19 and die by P21. Electrophysiological analyses of hippocampal slices showed aberrant epileptogenic activity in S + Elovl4 mut/mut mice. FM1-43 dye release studies showed that synapses made by cultured hippocampal neurons from S + Elovl4 mut/mut mice exhibited accelerated synaptic release kinetics. Supplementation of VLC-SFA to cultured hippocampal neurons from mutant mice rescued defective synaptic release to wild-type rates. Together, these studies establish a critical, novel role for ELOVL4 and its VLC-SFA products in regulating synaptic release kinetics and epileptogenesis. Future studies aimed at understanding the molecular mechanisms by which VLC-SFA regulate synaptic function may provide new targets for improved seizure therapies.


Assuntos
Proteínas do Olho/metabolismo , Ácidos Graxos/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Convulsões/metabolismo , Animais , Modelos Animais de Doenças , Proteínas do Olho/genética , Ácidos Graxos/farmacologia , Hipocampo/efeitos dos fármacos , Degeneração Macular/genética , Degeneração Macular/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Convulsões/genética
4.
J Lipid Res ; 58(4): 668-680, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202633

RESUMO

We present here a quantitative molecular blueprint of the three major glycerophospholipid (GPL) classes, phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE), in retina and six regions of the brain in C57Bl6 mice at 2, 10, and 26 months of age. We found an age-related increase in molecular species containing saturated and monoenoic FAs and an overall decrease in the longer-chain PUFA molecular species across brain regions, with loss of DHA-containing molecular species as the most consistent and dramatic finding. Although we found very-long-chain PUFAs (VLC-PUFAs) (C28) in PC in the retina, no detectable levels were found in any brain region at any of the ages examined. All brain regions (except hippocampus and retina) showed a significant increase with age in PE plasmalogens. All three retina GPLs had di-PUFA molecular species (predominantly 44:12), which were most abundant in PS (∼30%). In contrast, low levels of di-PUFA GPL (1-2%) were found in all regions of the brain. This study provides a regional and age-related assessment of the brain's lipidome with a level of detail, inclusion, and quantification that has not heretofore been published.


Assuntos
Encéfalo/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/isolamento & purificação , Fosfatidilserinas/metabolismo , Retina/metabolismo , Animais , Mapeamento Encefálico , Ácidos Graxos Insaturados/metabolismo , Camundongos , Fosfatidilcolinas/isolamento & purificação , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA