Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Heliyon ; 10(9): e29783, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694051

RESUMO

The issue of poor solubility of active pharmaceutical ingredients (APIs) has been a salient area of investigation and novel drug delivery systems are being developed to improve the solubility of drugs, enhance their permeability and thereby their efficacy. Several techniques for solubilization enhancement of poorly soluble drugs are often employed at various stages of pharmaceutical drug product development. One such delivery system is the therapeutic deep eutectic system (THEDES), which showed great potential in the enhancement of solubility and permeability of drugs and ultimately augmenting their bioavailability. THEDES are made by mixing drugs with deep eutectic solvents (DESs) in a definite molar ratio by the hit and trial method. The DESs are a new class of green solvents which are non-toxic, cheap, easy to prepare, biodegradable and have multiple applications in the pharmaceutical industry. The terminologies such as ionic liquids (ILs), DES, THEDES, and therapeutic liquid eutectic systems (THELES) have been very much in use recently, and it is important to highlight the pharmaceutical applications of these unexplored reservoirs in drug solubilization enhancement, drug delivery routes, and in the management of various diseases. This review is aimed at discussing the components, formulation strategies, and routes of administration of THEDES that are used in developing the formulation. Also, the major pharmaceutical applications of THEDES in the treatment of various metabolic and non-metabolic diseases are reviewed.

2.
J Clin Med ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792484

RESUMO

Background/Objectives: Obesity is currently considered a public health problem in both developed and developing countries. Gender- and age-specific body mass index (BMI) growth standards or references are particularly effective in monitoring the global obesity pandemic. This study aimed to report disparities in age-, gender- and ethnic-specific statistical estimates of overweight and obesity for 2-18 years aged Pakistani children and adolescents using the World Health Organization (WHO), the Center for Disease Control (CDC) 2000 references, the International Obesity Task Force (IOTF) and Pakistani references for BMI. Methods: The study used secondary data of 10,668 pediatric population, aged 2-18 years. Demographic information like age (years), gender, city and anthropometric examinations, i.e., height (cm) and weight (kg) were used in this study. The recommended age- and gender-specific BMI cut-offs of the WHO, CDC 2000 and the IOTF references were used to classify the children sampled as overweight and obese. For the Pakistani reference, overweight and obesity were defined as BMI-for-age ≥ 85th percentile and BMI-for-age ≥ 95th percentile, respectively. Cohen's κ statistic was used to assess the agreement between the international references and local study population references in the classification of overweight/obesity. Results: The statistical estimates (%) of the participants for overweight and obesity varied according to the reference used: WHO (7.4% and 2.2%), CDC (4.9% and 2.1%), IOTF (5.2% and 2.0%) and Pakistan (8.8% and 6.0%), respectively; suggesting higher levels of overweight and obesity prevalence when local study references are used. The Kappa statistic shows a moderate to excellent agreement (κ ≥ 0.6) among three international references when classifying child overweight and obesity and poor agreement between local references and the WHO (0.45, 0.52), CDC (0.25, 0.50) and IOTF references (0.16, 0.31), for overweight and obesity, respectively. Conclusions: The results of the study showed a visible difference in the estimates of excess body weight after applying the WHO, CDC, IOTF and local BMI references to the study population. Based on the disparity results and poor agreement between international references and the local study reference, this study recommends using local BMI references in identifying children with overweight and obesity.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124191, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38565046

RESUMO

The facilegreen synthesis techniqueis becoming more and more important, and it has been proposed as a potential substitute for chemical techniques. The current study describes a low-cost, environmentally friendly method for producing tungsten trioxide (WO3) and tantalum (Ta) doped WO3nanoparticles that uses 15 % (w/v) Azadirachta indica (Neem) leaf extract and different concentrations of Ta dopant (1 to 5 %) due to its well-matched ionic radius with WO3. Various techniques FESEM, TEM, EDX, BET, UV-Vis and PL, XRD, and FTIR were used to illustrate the morphological, elemental, optical, structural, and vibrational analysis of the synthesized nanoparticles respectively. Interestingly, the band gap was significantly reduced to 1.88 eV by the addition of a dopant element. For 3 % Ta/WO3, the average particle size was also reduced to 31.6 nm. The synthesized WO3nanoparticles employed in the current study have been used for photocatalytic activitypurposes. Methylene blue (MB), one of the principal water pollutants, was degraded more quickly by the synthesized Ta/WO3nanoparticles when exposed to UV radiation. Among them, 3 % Ta/WO3 gives significantly higher photodegradation 89 % attributed to the Burstein-Moss effect. The significant output of optimized nano-photocatalyst has been observed from the trapping experiment and reusability test. Furthermore, Zeta potential and TOC analysis have been taken to check the stability and mineralization performance. Additionally, the results of the simulation that was carried out using the finite element analysis approach in the RF module of COMSOL Multiphysics 5.3a are quite similar to the experimental findings. This simulation method made it easier for readers to understand the numerous aspects of the photocatalytic process that has been discussed here.

5.
Foods ; 13(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38397532

RESUMO

The diversity in the global food market is expanding as thousands of new products enter the business every year, among which nutraceutical and functional foods hold important positions. The present research work aimed at the nutritional evaluation of three medicinal herbs, i.e., turmeric (Curcuma longa L.), ginger (Zingiber officinale), and black cumin (Nigella sativa). A bread formulation was enriched with the individual/combined supplementation (1-3%) of these herbs. Later, the bread was analyzed for nutritional, rheological, textural, and sensorial characteristics. The results revealed that the herbs improved the nutritional composition of bread, especially ash and fiber, as the maximum ash and fiber contents were noticed in T15 (2.0% dried powder of each plant) with values of 1.64 ± 0.04% and 4.63 ± 0.16%, respectively. The results regarding the rheological behavior showed minor variations in the rheological traits and a slight increase in dough development time up to 4.50 ± 0.20 min in T10 from 2.80 ± 0.13 min in T0. The sensorial attributes also indicated their marked suitability as external and internal characteristics were least affected by the addition of the herbs. Although some parameters like the crust and crumb colors were affected by the addition of black cumin, showing values of 6.25 ± 0.52 and 4.44 ± 0.19, respectively, in T15, and aroma characteristics were affected by the addition of ginger, supplementation with a combination of herbs at lower doses mitigated the adverse effects of other herbs. Moreover, shelf-life extension, especially with the addition of turmeric powder, was the hallmark of this research. This study concluded that medicinal herbs can be incorporated into baked products to improve the nutritional and sensorial attributes of functional herbal bread.

6.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399352

RESUMO

This journal retracts the article "Intranasal Niosomal In Situ Gel as a Promising Approach for Enhancing Flibanserin Bioavailability and Brain Delivery: In Vitro Optimization and Ex Vivo/In Vivo Evaluation" [...].

7.
Environ Res ; 246: 118129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211718

RESUMO

The depletion of finite fossil fuel reserves and the severe environmental degradation resulting from human activities have compelled the expeditious development and application of sustainable waste to energy technologies. To encapsulate energy and environment in sustainability paradigm, bio waste based energy production is need to be forged in organic bio refinery setup. According to world bioenergy association, biomass can cover 50 % of the primary energy demand of the world. Therefore, the present study focuses on reforming the energy mix for a clean energy generation, where, sample composition of cotton stalk was acidified in dilute (5% wt.) hydrochloric acid (HCL) for analyzing material burnout patterns in biomass conversion systems utilized in organic bio refinery sector. Advanced thermochemical burning technique, which includes pyrolysis and combustion was applied at four different leaching times from 0 to 180 min under nitrogen environment from 0 °C to 500 °C and air from 500 °C to 900 °C, respectively. Different analyses including proximate, ultimate, gross calorific value (GCV), thermos-gravimetric, kinetic, XRD, FTIR, SEM-EDS were used for analyzing the degradation of demineralized cotton stalk at different treatment rates. Proximate study demonstrated that cotton stalk leaching for 180 min has efficiently infused HCL, leading in a significant increase in fixed carbon and higher heating value of 20.23 % and 12.48%, respectively, as well as a reduction in carbon footprint of around 54.80%. The findings of proximate was validated by GCV analysis and CHNS analysis as value of carbon and hydrogen has shown increasing behavior with the time delay in demineralization Thermo-gravimetric and derivative thermo-gravimetric data analyses shows an increasing trend of conversion efficiency, with the maximum increase of 98 % reported for sample 3H.TT.DEM. XRD characterization has reported 23° to 25° angle for all the observed peaks. Sample 3H.TT.DEM has shown maximum angle inclination along with matured crystalline peak. The latter observations has been validated by FTIR spectroscopy as sample 3H.TT.DEM has reported maximum O-H group formation. Sample 3H.TT.DEM has reported lowest activation energy of 139.51 kJ*mole-1 and lowest reactivity of 0.000293649%*min 0C, due to moderate and stable reactiveness. In SEM examination, increment in pore size and number of pores within the structural matrix of cotton stalk was observed with the enhancement in acidulation process. Furthermore, in EDS analysis, 3H.TT.DEM has shown most balanced distribution of the elements. In this research, sustainable transformation of biomass is envisioned to improve the waste bio refinery system, significantly contributing to the achievement of Sustainable Development Goals 7, 12 and 13.


Assuntos
Carbono , Nitrogênio , Humanos , Biomassa , Nitrogênio/análise , Pirólise , Biocombustíveis/análise
8.
Aesthetic Plast Surg ; 48(5): 1005-1015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37605021

RESUMO

BACKGROUND: Several recent observational studies have associated obesity, lifestyle factors (smoking, sleep duration, and alcohol drinking), and glycemic traits with facial aging. However, whether this relationship is causal due to confounding and reverse causation is yet to be substantiated. AIMS: We aimed to assess these relationships using Mendelian randomization (MR). METHODS: For the instrumental variables, this paper selected independent single nucleotide polymorphisms (SNPs) linked to the exposures at a genome-wide state (P < 5 × 10-8) in equivalent genome-wide association studies (GWAS). Using the UK Biobank, we obtained summary-level data for facial aging on 423,999 individuals. The primary assessments were performed through the combination of complementing techniques (simple method approaches, weighted model, MR-Egger, and weighted median) and the inverse-variance-weighted method. Along with that, we examined the heterogeneity and horizontal pleiotropy through different types of sensitivity analyses. RESULTS: The correlations were (a) facial aging for body mass index (BMI, OR = 1.054, 95% CI 1.044-1.64), (b) waist/hip ratio (OR = 1.056, 95% CI 1.023-1.091), and (c) smoking (OR = 1.023, 95% CI 1.007-1.039). Equally important, the correlations for waist/hip ratio remained robust after adjusting for the genetically predicted BMI (OR = 1.028, 95% CI 1.003-1.054). However, no causal effects of alcoholic drinking, glycemic traits, and sleep duration on facial aging were observed. CONCLUSIONS: The outcomes shed light on the potential correlation of obesity and cigarette smoking with facial aging while putting forward a more comprehensive and credible foundation for the optimization of facial aging strategies. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Animais , Humanos , Estilo de Vida , Envelhecimento , Obesidade/epidemiologia , Obesidade/genética
9.
Intern Med J ; 54(1): 43-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926861

RESUMO

BACKGROUND: Severe COVID-19 causes acute inflammation, which is complicated by venous thromboembolism events (VTE). However, it is unclear if VTE risk has evolved over time since the COVID-19 outbreak. AIMS: To determine markers of thrombo-inflammation and rates of symptomatic VTE in patients hospitalised for COVID-19 in a metropolitan hospital in Sydney, Australia. METHODS: A retrospective, single-centre, cohort study was performed by reviewing electronic medical records of consecutive patients admitted to Royal Prince Alfred Hospital between March 2020 and September 2021. This period included three waves of COVID-19 outbreaks in Australia with the ancestral, alpha and delta variants. Standard coagulation assays and inflammatory markers were recorded over 4 weeks. RESULTS: A total of 205 patients were consecutively admitted during the study period. Activated partial thromboplastin time, neutrophil count and C-reactive protein (CRP) were significantly increased in patients hospitalised in the intensive care unit (ICU) compared with non-ICU patients. The use of anti-inflammatory medication increased in 2021 compared with 2020. The mortality rate was 7.3% in our cohort. Ninety-four per cent of patients received anticoagulation with 6.3% of patients developing VTE. CONCLUSION: We observed lower rates of VTE compared to the internationally reported rate for the same period. We conclude that in the setting of controlled hospital admission rate and standard anticoagulation guidelines, COVID-19 resulted in similar thrombo-inflammatory response and VTE rates over the first 1.5 years of the pandemic.


Assuntos
COVID-19 , Tromboembolia Venosa , Humanos , COVID-19/complicações , Anticoagulantes/uso terapêutico , SARS-CoV-2 , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/epidemiologia , Estudos de Coortes , Estudos Retrospectivos , Inflamação/epidemiologia
10.
Sensors (Basel) ; 23(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139745

RESUMO

Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there is a need for a cost-effective, lightweight, small-dimensional, and non-invasive device whose presence does not interfere with the observed signals. This paper reports on the fabrication of a highly sensitive human respiratory sensor based on silicon nanowires (SiNWs) fabricated by a top-down method of metal-assisted chemical-etching (MACE). Besides other important factors, reducing the final cost of the sensor is of paramount importance. One of the factors that increases the final price of the sensors is using gold (Au) electrodes. Herein, we investigate the sensor's response using aluminum (Al) electrodes as a cost-effective alternative, considering the fact that the electrode's work function is crucial in electronic device design, impacting device electronic properties and electron transport efficiency at the electrode-semiconductor interface. Therefore a comparison is made between SiNWs breath sensors made from both p-type and n-type silicon to investigate the effect of the dopant and electrode type on the SiNWs respiratory sensing functionality. A distinct directional variation was observed in the sample's response with Au and Al electrodes. Finally, performing a qualitative study revealed that the electrical resistance across the SiNWs renders greater sensitivity to breath than to dry air pressure. No definitive research demonstrating the mechanism behind these effects exists, thus prompting our study to investigate the underlying process.


Assuntos
Nanofios , Silício , Humanos , Ouro , Semicondutores , Alumínio
11.
Heliyon ; 9(12): e23038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149192

RESUMO

Tractors are manufactured without air-conditioned cabins in Pakistan. This leads to thermal discomfort for tractor operators working under direct solar exposure. Therefore, this study aimed to design and install an air-conditioned cabin on a tractor. Experiments were undertaken to evaluate the installed cabin performance under two scenarios i.e., conventional (S-I) and enhanced (S-II) air distribution. Computational fluid dynamics (CFD) simulations were used to analyze airflow and calculate thermal comfort indices. The results showed that the air-conditioned cabin attained optimum thermal conditions under the enhanced air distribution scenario (S-II). In this scenario, the inside cabin temperature was an average of 27.4 °C, compared with 30.4 °C in S-I. The relative humidity remained similar in both scenarios, around 53 %. The temperature difference between the cabin and the ambient environment was 11.09 °C in S-II, aligning with the thermal comfort conditions outlined in ISO 14269-2. Furthermore, the CFD simulations showed a predicted mean vote (PMV) index of 0.61 and the percentage people dissatisfied (PPD) index of 26.5 %. These results also confirm the provision of optimum thermal conditions for operator inside the cabin. The simulations also demonstrated good agreement with experimental data, with a small difference in air temperature (2 °C) and relative humidity (5.8 %). In the light of these findings, this study recommends installation of air-conditioned cabin on tractors with enhanced air distribution (S-II) in Pakistan to improve thermal comfort of operators.

12.
Micromachines (Basel) ; 14(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893361

RESUMO

This research is centered on optimizing the mechanical properties of additively manufactured (AM) lattice structures via strain optimization by controlling different design and process parameters such as stress, unit cell size, total height, width, and relative density. In this regard, numerous topologies, including sea urchin (open cell) structure, honeycomb, and Kelvin structures simple, round, and crossbar (2 × 2), were considered that were fabricated using different materials such as plastics (PLA, PA12), metal (316L stainless steel), and polymer (thiol-ene) via numerous AM technologies, including stereolithography (SLA), multijet fusion (MJF), fused deposition modeling (FDM), direct metal laser sintering (DMLS), and selective laser melting (SLM). The developed deep-learning-driven genetic metaheuristic algorithm was able to achieve a particular strain value for a considered topology of the lattice structure by controlling the considered input parameters. For instance, in order to achieve a strain value of 2.8 × 10-6 mm/mm for the sea urchin structure, the developed model suggests the optimal stress (11.9 MPa), unit cell size (11.4 mm), total height (42.5 mm), breadth (8.7 mm), width (17.29 mm), and relative density (6.67%). Similarly, these parameters were controlled to optimize the strain for other investigated lattice structures. This framework can be helpful in designing various AM lattice structures of desired mechanical qualities.

13.
J Biomol Struct Dyn ; : 1-12, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37776007

RESUMO

The hepatitis C virus (HCV), which causes hepatitis C, is a viral infection that damages the liver and causes inflammation in the liver. New potentially effective antiviral drugs are required for its treatment owing to various issues associated with the existing medications, including moderate to severe adverse effects, higher costs, and the emergence of drug-resistant strains. The objective of the current study was to utilize computational techniques to assess the anti-HCV efficacy of certain phytochemicals against tetraspanin (CD81) and claudin 1 (CLDN1) entry proteins. A 200-nanosecond molecular dynamics (MD) simulation was employed to examine the stability of the lead-protein complexes. Free binding energy and molecular docking calculations were conducted utilizing MM/GBSA method, and the selectivity of hit compounds for CD81 and CLDN1 was determined. Five significant CD81 and CLDN1 inhibitors were identified: Petasiphenone, Silibinin, Tanshinone IIA, Taxifolin, and Topaquinone. The MM/GBSA analysis of the compounds revealed high free binding energies. All the identified compounds were stable within the CD81 and CLDN1 binding pockets. This study indicated the promising inhibitory potential of the identified compounds against CD81 and CLDN1 receptors and might develop into potential viral entry inhibitors. However, to validate the chemotherapeutic capabilities of the discovered leads extensive preclinical research is required.Communicated by Ramaswamy H. Sarma.

14.
Sci Total Environ ; 905: 167124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37722433

RESUMO

Due to concerns over rising emissions of carbon dioxide (CO2) from fossil fuel utilization, there has been a strong emphasis on the development of a safe, economical, practical method of carbon capture utilization and storage (CCUS). One way to reduce these CO2 emissions is underground geological sequestration in depleted oil fields or exhausted reservoirs. CO2 injection into oil reservoirs is an established technology, these reservoirs not only offer the potential for high storage of CO2 but this process could also target a large amount of oil and gas recovery through a technique called enhanced oil recovery (EOR). The main objective of this research was to evaluate the storage potential of CO2 in the depleted oil field while also investigating the effect of CO2 injection on reservoir pressure maintenance, and additional oil and gas recovery, in the same field. This paper presented the model of CO2 flooding based on the CO2 displacement mechanism with different scenarios of natural depletion, CO2 injection, and water injection simulated by the ECLIPSE 300 reservoir simulator, and the results of different scenarios were compared. Results of this study showed the site selected for CO2 injection has the potential to store more than 9 billion cubic feet (BCF) of CO2 in each case and witnessed improved gas recovery, while also having a major effect on reservoir pressure maintenance where pressure increased from 2120 psi to 6584 psi. The finding of this work ought to help in preparing for future improvement in underground geological sequestration of CO2 in depleted fields with the same field specifications.

15.
RSC Adv ; 13(33): 23211-23222, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37533780

RESUMO

In recent years, vacancy-ordered halide double perovskites have emerged as promising non-toxic and stable alternatives for their lead-based counterparts in optoelectronic applications. In particular, vacancy ordered Cs2PtI6 has emerged as a star material because of its high absorption coefficient, band gap of 1.37 eV, and long minority carrier lifetime. Despite substantial experimental research on this new class of material, theoretical simulations of their device properties remain scarce. In this work, a novel n-i-p device architecture (FTO/SnO2/Cs2PtI6/MoO3/C) is theoretically investigated using a solar cell capacitance simulator (SCAPS-1D). Theoretical investigations are carried out in order to optimize the device performance structure by varying the perovskite and selective charge transport layer thickness, absorber and interface defect density, operating temperature, back contact, series and shunt resistance, respectively. The optimized device showed an impressive power conversion efficiency (PCE) of 23.52% at 300 K, which is higher than the previously reported values. Subsequent analysis of the device's spectral response indicated that it possessed 98.9% quantum efficiency (QE) and was visibly active. These findings will provide theoretical guidelines for enhancing the performance of Cs2PtI6-based photovoltaic solar cells (PSCs) and pave the way for the widespread implementation of environmentally benign and stable perovskites.

16.
Heliyon ; 9(8): e17827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533994

RESUMO

Vegetable production plays a vital role in ensuring food security in Bangladesh. However, the majority of vegetable seedlings are currently transplanted manually, which is not only time-consuming but also labor-intensive and costly. In this context, a semi-automated transplanter can be considered as an alternative solution for mechanized seedling transplanting. To mechanize seedling operations, two types of transplanters were designed, fabricated and tested: the power tiller-operated semi-automatic dibbler vegetable seedling (DVS) transplanter and the furrow opener vegetable seedling (FVS) transplanter. The goal was to evaluate their performance and impact on field crop productivity. In the DVS transplanter design, the larger sprocket was adjusted to enhance the precision of hole-making by pressing the dibbler into the soil, creating holes where seedlings would be transplanted. On the other hand, the FVS transplanter utilized a furrow opener to create furrows, and the seedling is placed in these furrow at a specific distance from the furrow opener wall, where the distance between seedlings within the furrow could be adjusted based on the specific requirements of the seedling crop. The results of the evaluation indicated that both transplanters successfully planted seedlings without any missing placements, while hole covering was achieved at 115 and 118.2% for the DVS and FVS transplanters, respectively. The field capacity and field efficiency for both transplanters were determined to be 0.05 ha h-1 and 61.18%, respectively, with a coefficient of variation of 5% or less. Field tests conducted with brinjal crops at a forward speed of 1.2 km h-1 and a spacing of 0.7 × 0.6 m demonstrated that both designs yielded higher yield productivity compared to manual transplantation. Additionally, no issues related to vegetative development were observed. Both transplanters exhibited promising performance and significant potential in terms of accurately transplanting seedlings, and ensuring satisfactory transplantation quality. Furthermore, these transplanters offer several advantages, including less time-consuming, lower labor demands and even distribution of seedlings. This design encourages small to medium-level farmers seeking to engage in mechanized vegetable farming practices.

17.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569966

RESUMO

Phenol resins (PRs) are considered as relatively inexpensive adsorbents synthesized from agricultural biomass via employing a variety of synthesized procedures. The performance of PR for heat transformation application is not widely investigated. In this regard, the present study aims to evaluate the four PR derivative/refrigerant pairs, namely (i) KOH6-PR/CO2, (ii) SAC-2/HFC, (iii) KOH4-PR/ethanol, and (iv) KOH6-PR/ethanol, for adsorption cooling and adsorption heating applications. Ideal cycle analyses and/or thermodynamic modelling approaches were utilized comprising governing heat and mass balance equations and adsorption equilibrium models. The performance of the AHP system is explored by means of specific cooling energy (SCE), specific heating energy (SHE), and coefficient of performance (COP), both for cooling and heating applications, respectively. It has been realized that KOH6-PR/ethanol could produce a maximum SCE of 1080 kJ/kg/cycle and SHE of 2141 kJ/kg/cycle at a regeneration temperature (Treg) and condenser temperature (Tcond) of 80 °C, and 10 °C, respectively, followed by KOH4-PR/ethanol, SAC-2/HFC-32, and KOH6-PR/CO2. The maximum COP values were estimated to be 1.78 for heating and 0.80 for cooling applications, respectively, at Treg = 80 °C and Tcond = 10 °C. In addition, the study reveals that, corresponding to increase/decrease in condenser/evaporator pressure, both SCE and SHE decrease/increase, respectively; however, this varies in magnitude due to adsorption equilibrium of the studied PR derivative/refrigerant pairs.

18.
Sci Rep ; 13(1): 13537, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598258

RESUMO

The primary objective of this research was to create injectable delivery formulations using Lactotransferrin (LTF) peptide-loaded dextran nanoparticles coated with docosahexaenoic acid. These nanoparticles, designated as LLDDNP, underwent a lyophilization process. The study encompassed a comprehensive investigation, including physicochemical characterization, in vivo assessment of biomarkers, and an examination of immune response through cytokine modulation. The zeta potential of LLDDNP was - 24.5 ± 12 mV, while their average particle size was 334.9 z.d.nm. The particles exhibited a conductivity of 2.10 mS/cm, while their mobility in the injectable dosage form was measured at - 3.65 µm cm/Vs. The scanning electron microscopy investigation, the lyophilization processes resulted in discrete particles forming particle aggregations. However, transmission electron microscopy analysis revealed that LLDDNP is spherical and smooth. The thermogram showed that about 95% of LLDDNP's weight was lost at 270 °C, indicating that the particles are extremely thermal stable. The XRD analysis of LLDDNP exhibited clear and distinctive peaks at 2θ angles, specifically at 9.6°, 20.3°, 21.1°, 22°, 24.6°, 25.2°, 36°, and 44.08°, providing compelling evidence of the crystalline nature of the particles. According to proton NMR studies, the proton dimension fingerprint region of LLDDNP ranges from 1.00 to 1.03 ppm. The in vitro release of LTF from LLDDNP was found to follow zero-order kinetics, with a commendable R2 value of 0.942, indicating a consistent and predictable release pattern over time. The in vivo investigation revealed a significant impact of hepatotoxicity on the elevation of various cytokines, including IL-1ß, IL-6, IL-8R, TNF-α, IL-2, IL-4, IL-10, and IFN-γ. Additionally, the presence of hepatotoxicity led to an increase in apoptosis markers, namely caspase 3 and caspase 9, as well as elevated levels of liver biomarkers such as CRP, ALP, ALT, and AST. In contrast, the treatment with LLDDNP modulated the levels of all biomarkers, including cytokines level in the treatment group extremely high significant at p < 0.001.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lactoferrina , Humanos , Ácidos Docosa-Hexaenoicos , Dextranos , Prótons , Citocinas
19.
Molecules ; 28(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513307

RESUMO

The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.


Assuntos
Antivirais , Benzoquinonas , Antivirais/farmacologia , Benzoquinonas/farmacologia , Solubilidade , Tamanho da Partícula
20.
RSC Adv ; 13(32): 22529-22537, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37497089

RESUMO

Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA