Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Recent Pat Biotechnol ; 16(1): 64-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34994337

RESUMO

The world continues to be in the midst of a distressing pandemic of coronavirus disease 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel virus with multiple antigenic systems. The virus enters via nasopharynx, oral and infects cells by the expression of the spike protein, and enters the lungs using the angiotensin-converting enzyme-2 receptor. The spectrum of specific immune responses to SARS-CoV-2 virus infection is increasingly challenging as frequent mutations have been reported and their antigen specificity varies accordingly. The development of monoclonal antibodies (mAbs) will have a more significant advantage in suppressing SARS-CoV-2 virus infectivity. Recently, mAbs have been developed to target included specific neutralizing antibodies against SARS-CoV-2 infection. The use of the therapeutic index of mAbs that can elicit neutralization by binding to the viral spike protein and suppress the cytokine network is a classic therapeutic approach for a potential cure. The development of mAbs against B-cell function as well as inhibition of the cytokine network has also been a focus in recent research. Recent studies have demonstrated the efficacy of mAbs as antibody cocktail preparations against SARS-CoV-2 infection. Target specific therapeutic accomplishment with mAbs, a milestone in the modern therapeutic age, can be used to achieve a specific therapeutic strategy to suppress SARS-CoV-2 virus infection. This review focuses on the molecular aspects of the cytokine network and antibody formation to better understand the development of mAbs against SARS- CoV-2 infection along with recent patents.


Assuntos
Antineoplásicos Imunológicos , Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Citocinas , Humanos , Patentes como Assunto , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
2.
Braz. J. Pharm. Sci. (Online) ; 58: e20349, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420459

RESUMO

Abstract Quality is paramount and needs to be maintained throughout the shelf life of pharmaceuticals. The current study aimed to evaluate the quality, potency, and drug-drug interaction in an in vivo animal model by using two drugs, namely, metoprolol and glimepiride. Tablets were selected for their physical characteristics, such as shape, size, and color. Quality control tests, such as weight variation, hardness, friability, and disintegration tests, and invitro drug release studies were performed as per USP. Drug-drug interaction and in vivo studies were carried out according to the standard protocol of the animal ethics committee. Quality control tests of both the tablets were within the specified range. The cumulative release percentages of the drugs were 81.12% and 85.36% for Metoprolol Tartrate and Glimepiride, respectively, in a physiological buffer solution within 1 h. The combination of metoprolol and Glimepiride also significantly decreased the blood glucose level in diabetic animals. However, the blood glucose level increased in the group receiving metoprolol only, but the difference was not significant. The result suggested that the formulations are safe. However, the chronic use of this combination requires frequent monitoring of blood glucose level to improve its efficacy and for the patient's safety.


Assuntos
Animais , Masculino , Feminino , Camundongos , Controle de Qualidade , Comprimidos/classificação , Interações Medicamentosas , Metoprolol/análise , Técnicas In Vitro/métodos , Preparações Farmacêuticas/análise , Gestão da Qualidade Total/estatística & dados numéricos
3.
Pharmaceutics ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371776

RESUMO

Breast cancer is the most widespread malignancy in women worldwide. Nanostructured lipid carriers (NLCs) have proven effective in the treatment of cancer. NLCs loaded with imatinib (IMA) (NANIMA) were prepared and evaluated for their in vitro efficacy in MCF-7 breast cancer cells. The hot homogenization method was used for the preparation of NANIMAs. An aqueous solution of surfactants (hot) was mixed with a molten mixture of stearic acid and sesame oil (hot) under homogenization. The prepared NANIMAs were characterized and evaluated for size, polydispersity index, zeta potential, encapsulation efficiency, release studies, stability studies, and MTT assay (cytotoxicity studies). The optimized NANIMAs revealed a particle size of 104.63 ± 9.55 d.nm, PdI of 0.227 ± 0.06, and EE of 99.79 ± 0.03. All of the NANIMAs revealed slow and sustained release behavior. The surfactants used in the preparation of the NANIMAs exhibited their effects on particle size, zeta potential, encapsulation efficiency, stability studies, and release studies. The cytotoxicity studies unveiled an 8.75 times increase in cytotoxicity for the optimized NANIMAs (IC50 = 6 µM) when compared to IMA alone (IC50 = 52.5 µM) on MCF-7 breast cancer cells. In the future, NLCs containing IMA will possibly be employed to cure breast cancer. A small amount of IMA loaded into the NLCs will be better than IMA alone for the treatment of breast cancer. Moreover, patients will likely exhibit less adverse effects than in the case of IMA alone. Consequently, NANIMAs could prove to be useful for effective breast cancer treatment.

4.
Pharmaceutics ; 13(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34452251

RESUMO

Polymeric lipid hybrid nanoparticles (PLNs) are core-shell nanoparticles made up of a polymeric kernel and lipid/lipid-PEG shells that have the physical stability and biocompatibility of both polymeric nanoparticles and liposomes. PLNs have emerged as a highly potent and promising nanocarrier for a variety of biomedical uses, including drug delivery and biomedical imaging, owing to recent developments in nanomedicine. In contrast with other forms of drug delivery systems, PLNs have been regarded as seamless and stable because they are simple to prepare and exhibit excellent stability. Natural, semi-synthetic, and synthetic polymers have been used to make these nanocarriers. Due to their small scale, PLNs can be used in a number of applications, including anticancer therapy, gene delivery, vaccine delivery, and bioimaging. These nanoparticles are also self-assembled in a reproducible and predictable manner using a single or two-step nanoprecipitation process, making them significantly scalable. All of these positive attributes therefore make PLNs an attractive nanocarrier to study. This review delves into the fundamentals and applications of PLNs as well as their formulation parameters, several drug delivery strategies, and recent advancements in clinical trials, giving a comprehensive insight into the pharmacokinetic and biopharmaceutical aspects of these hybrid nanoparticles.

5.
Pharmaceutics ; 13(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200268

RESUMO

Nano-crystallization is a new emerging strategy to promote the saturation solubility, dissolution rate and subsequent bioavailability of Biopharmaceutical Class II drugs. Capsaicin belongs to BCS class-II drugs having low water solubility and dissolution rate. Nano-crystals (NC) of pure Capsaicin was developed and optimized in order to increase its water solubility, dissolution and further to promote its adhesiveness to skin epidermis layer. NC formulations were subjected to stability studies, droplet size, surface charge, poly-dispensability index, drug content, entrapment efficiency, thermal analysis, surface morphology, crystalline studies, solubility profile, in vitro release and ex vivo permeation studies. In vivo anti-inflammatory assay (Carrageenan-induced paw edema) was performed in Sprague Dawley rats. Nanocrystals loaded with capsaicin showed particle size 120 ± 3.0 nm with surface charge of -20.7 ± 3.5 and PDI was 0.48 ± 1.5. Drug content and entrapment efficiency of T3 was 85% and 90 ± 1.9% respectively. Thermal studies predicted that melting peak of capsaicin was present in the formulation suggested that there was no interaction between active moieties and excipients in NC formulation. Surface morphology confirmed the presence of Nano-size crystals having rough crystalline surface. XRD proved that the capsaicin NC are successfully developed by using high speed homogenization. The solubility of capsaicin was found to be 12.0 ± 0.013 µg/mL in water. In vitro study revealed that 89.94 ± 1.9% of drug was released within 24 h. Similarly, drug permeation was 68.32 ± 1.83%, drug retained in skin was 16.13 ± 1.11% while drug retained on skin was 9.12 ± 0.14% after 12 h. The nanocrystals showed higher anti-inflammatory activity as compared to marketed product (Dicloran®). The study concluded that improvement in dissolution rate of capsaicin may potentially provide the opportunities in the development of a much cost-effective dosage forms that will produce improved pharmacological effects, but at low dose as compared to the already available products.

6.
Phytother Res ; 35(10): 5440-5458, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34184327

RESUMO

Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.


Assuntos
Antioxidantes , Isotiocianatos , Anti-Inflamatórios , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Sulfóxidos
7.
Pharmaceutics ; 13(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802156

RESUMO

Recently, drug delivery using natural biological carriers has emerged as one of the most widely investigated topics of research. Erythrocytes, or red blood cells, can act as potential carriers for a wide variety of drugs, including anticancer, antibacterial, antiviral, and anti-inflammatory, along with various proteins, peptides, enzymes, and other macromolecules. The red blood cell-based nanocarrier systems, also called nanoerythrosomes, are nanovesicles poised with extraordinary features such as long blood circulation times, the ability to escape immune system, the ability to release the drug gradually, the protection of drugs from various endogenous factors, targeted and specified delivery of drugs, as well as possessing both therapeutic and diagnostic applications in various fields of biomedical sciences. Their journey over the last two decades is escalating with fast pace, ranging from in vivo to preclinical and clinical studies by encapsulating a number of drugs into these carriers. Being biomimetic nanoparticles, they have enhanced the stability profile of drugs and their excellent site-specific targeting ability makes them potential carrier systems in the diagnosis and therapy of wide variety of tumors including gliomas, lung cancers, breast cancers, colon cancers, gastric cancers, and other solid tumors. This review focuses on the most recent advancements in the field of nanoerythrosomes, as an excellent and promising nanoplatform for the novel drug delivery of various drugs particularly antineoplastic drugs along with their potential as a promising diagnostic tool for the identification of different tumors.

8.
Front Public Health ; 8: 384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754570

RESUMO

Severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2), previously called 2019 novel CoV, emerged from China in late December 2019. This virus causes CoV disease-19 (COVID-19), which has been proven a global pandemic leading to a major outbreak. As of June 19, 2020, the data from the World Health Organization (WHO) showed more than 8.7 million confirmed cases in over 200 countries/regions. The WHO has declared COVID-19 as the sixth public health emergency of international concern on January 30, 2020. CoVs cause illnesses that range in severity from the common cold to severe respiratory illnesses and death. Nevertheless, with technological advances and imperative lessons gained from prior outbreaks, humankind is better outfitted to deal with the latest emerging group of CoVs. Studies on the development of in vitro diagnostic tests, vaccines, and drug re-purposing are being carried out in this field. Currently, no approved treatment is available for SARS-CoV-2 given the lack of evidence. The results from preliminary clinical trials have been mixed as far as improvement in the clinical condition and reduction in the duration of treatment are concerned. A number of new clinical trials are currently in progress to test the efficacy and safety of various approved drugs. This review focuses on recent advancements in the field of development of diagnostic tests, vaccines, and treatment approaches for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Teste para COVID-19 , China/epidemiologia , Humanos
9.
Drug Deliv ; 27(1): 622-631, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32329374

RESUMO

NLC containing Gefitinib (NANOGEF) was prepared using stearic acid, sesame oil and surfactants (sodium lauryl sulfate and tween 80). NANOGEFs were evaluated for particle size, polydispersity index (PdI), zeta potential, entrapment efficiency (EE), stability, release studies and cytotoxicity studies (MTT assay). The optimized NANOGEF exhibited particle size of 74.06 ± 9.73 d.nm, PdI of 0.339 ± 0.029 and EE of 99.76 ± 0.015%. The TEM study revealed spherical shape of NANOGEF formulations. The slow and sustained release behavior was exhibited by all NANOGEFs. The effects of surfactants were observed not only on particle size but also on zeta potential, entrapment efficiency, stability and release studies. The MTT assay revealed 4.5 times increase in cytotoxicity for optimized NANOGEF (IC50 = 4.642 µM) when compared with Gefitinib alone (IC50 = 20.88 µM in HCT-116 cells). Thus NANOGEF may be considered as a potential drug delivery system for the cure of colon cancer.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Gefitinibe/administração & dosagem , Lipídeos/química , Nanoestruturas/química , Morte Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Células HCT116 , Humanos , Lipídeos/administração & dosagem , Nanoestruturas/administração & dosagem , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA