Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 212(8): 1257-1267, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560813

RESUMO

The Canadian Society for Immunology (CSI) established a formal Equity, Diversity, and Inclusion (EDI) Committee with the goal of providing EDI advocacy and leadership within the CSI, as well as in the broader scientific community. A first task of this committee was to review the publicly available historical data on gender representation within the CSI's membership, leadership, award recipients, and conference chairs/presenters as a step in establishing a baseline reference point and monitoring the trajectory of future success in achieving true inclusion. We found that, except for overall membership and a specific subset of awards, all categories showed a historical bias toward men, particularly prior to 2010. Bias persists in various categories, evident even in recent years. However, we note an encouraging trend toward greater gender parity, particularly in the roles of President, symposium presenters, and workshop chairs, especially from 2017 onward. We present these findings as well as our recommendations to enhance inclusivity. These include a more comprehensive collection and secure storage of self-identification data, emphasis on EDI as an essential component of all annual meeting activities, and innovative measures of outreach, collaboration, and leadership with the aim of making the CSI a model for improving EDI in other professional research societies.


Assuntos
Distinções e Prêmios , Liderança , Feminino , Humanos , Masculino , Canadá , Estudos Retrospectivos , Sociedades Médicas
2.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003533

RESUMO

Intravital microscopy (IVM) is a powerful imaging tool that captures biological processes in real-time. IVM facilitates the observation of complex cellular interactions in vivo, where ex vivo and in vitro experiments lack the physiological environment. IVM has been used in a multitude of studies under healthy and pathological conditions in different organ systems. IVM has become essential in the characterization of the immune response through visualization of leukocyte-endothelial interactions and subsequent changes within the microcirculation. Lipopolysaccharide (LPS), a common inflammatory trigger, has been used to induce inflammatory changes in various studies utilizing IVM. In this review, we provide an overview of IVM imaging of LPS-induced inflammation in different models, such as the brain, intestines, bladder, and lungs.


Assuntos
Microscopia Intravital , Lipopolissacarídeos , Lipopolissacarídeos/toxicidade , Microscopia Intravital/métodos , Comunicação Celular , Endotélio , Intestinos , Microcirculação , Leucócitos
3.
Immunol Cell Biol ; 101(6): 473-478, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37393193

RESUMO

The Canadian Society for Immunology (CSI) organized an Equity, Diversity and Inclusion (EDI) training workshop during its 2022 Scientific Meeting to improve understanding of EDI and explore strategies to achieve EDI goals in the scientific environment. The workshop focused on identifying Specific, Measurable, Achievable, Realistic and Timely (SMART) goals related to EDI in academia through small group discussions and learning exercises. Attendees highlighted several equity considerations within the field of academic immunology, including financial barriers, lack of diversity in research teams and gender bias; they emphasized the importance of creating an inclusive and accessible research environment. The collection and use of data relevant to EDI goals within the CSI were also identified as challenges. Fostering a culture of active and nonjudgmental listening within the CSI community is another aspirational goal to address EDI. The workshop received positive feedback from attendees, who noted that more diverse voices and specific actions for local research environments are needed.


Assuntos
Diversidade, Equidade, Inclusão , Feminino , Humanos , Masculino , Canadá , Comunicação , Sexismo
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555499

RESUMO

Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.


Assuntos
Lesão Pulmonar Aguda , Canabinoides , Pneumonia , Síndrome do Desconforto Respiratório , Sepse , Camundongos , Animais , Endotoxinas/efeitos adversos , Microcirculação , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Pneumonia/patologia , Inflamação/patologia , Pulmão/patologia , Canabinoides/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/induzido quimicamente , Citocinas , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Lipopolissacarídeos/toxicidade , Dexametasona/efeitos adversos , Camundongos Endogâmicos C57BL
5.
Life (Basel) ; 12(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35888054

RESUMO

Breast cancer has historically been one of the leading causes of death for women worldwide. As of 2020, breast cancer was reported to have overtaken lung cancer as the most common type of cancer globally, representing an estimated 11.3% of all cancer diagnoses. A multidisciplinary approach is taken for the diagnosis and treatment of breast cancer that includes conventional and targeted treatments. However, current therapeutic approaches to treating breast cancer have limitations, necessitating the search for new treatment options. Cancer cells require adequate iron for their continuous and rapid proliferation. Excess iron saturates the iron-binding capacity of transferrin, resulting in non-transferrin-bound iron (NTBI) that can catalyze free-radical reactions and may lead to oxidant-mediated breast carcinogenesis. Moreover, excess iron and the disruption of iron metabolism by local estrogen in the breast leads to the generation of reactive oxygen species (ROS). Therefore, iron concentration reduction using an iron chelator can be a novel therapeutic strategy for countering breast cancer development and progression. This review focuses on the use of iron chelators to deplete iron levels in tumor cells, specifically in the breast, thereby preventing the generation of free radicals. The inhibition of DNA synthesis and promotion of cancer cell apoptosis are the targets of breast cancer treatment, which can be achieved by restricting the iron environment in the body. We hypothesize that the usage of iron chelators has the therapeutic potential to control intracellular iron levels and inhibit the breast tumor growth. In clinical settings, iron chelators can be used to reduce cancer cell growth and thus reduce the morbidity and mortality in breast cancer patients.

6.
Neurourol Urodyn ; 40(7): 1704-1719, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34350618

RESUMO

AIMS: Long-term or recreational use of ketamine affects the urinary system and can result in ketamine-induced cystitis (KIC). Rodent models of KIC are important to study KIC pathophysiology and are paramount to the future development of therapies for this painful condition. This review aims to provide a summary of rodent models of KIC, focusing on disease induction, experimental methods, and pathological features of the model. METHOD: A literature search was performed using the National Center for Biotechnology Information (NCBI) Pubmed database up to March 2021. 20 articles met the inclusion criteria and were finally selected. RESULTS: There are considerable variations in the rodent models used for studying KIC in terms of the strain of the animal being used; dose, duration, and route of ketamine administration to induce KIC, and assessment of pathological features. CONCLUSION: KIC remains difficult to fully recapitulate in humans. Improved characterization of KIC models and the experimental parameters and meticulous discussion on translational limitations are required to improve the translational value of research using rodent models of KIC.


Assuntos
Cistite , Ketamina , Animais , Cistite/induzido quimicamente , Ketamina/toxicidade , Roedores
7.
Cannabis Cannabinoid Res ; 6(4): 327-339, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998888

RESUMO

Introduction: Acute central nervous system (CNS) injury, such as stroke, spinal cord injury, or traumatic brain injury can result in dysregulated immune response, and the condition is known as CNS injury-induced immunodeficiency syndrome (CIDS). The endocannabinoid system is an important homeostatic regulator in the CNS and immune system. Activation of cannabinoid 2 receptors (CB2R) on immune cells has been reported to dampen inflammation, suggesting a potential role of CB2R in the peripheral immune response following CNS injury. In this study, we have investigated the effect of CB2R modulation on the peripheral immune response during CIDS. Materials and Methods: Experimental CNS injury was induced in C57BL/6 mice through intracerebral injection of the vasopressor peptide, endothelin-1. A selective CB2R agonist (HU308) was used as an early treatment before the onset of CIDS and AM630, a selective CB2R antagonist, was administered as a later-phase therapy to combat the systemic immunodeficiency following the CNS injury. The peripheral immune response to endotoxin was studied 24 h after the CNS injury using intravital microscopy to examine leukocyte activation within the intestinal microcirculation in mice. Brain infarct size, and plasma levels of cytokines and soluble adhesion molecules were measured as additional parameters for the assessment of treatment outcomes. Results: Our results showed that early CB2R activation with HU308 reduced brain injury size and restored leukocyte response to endotoxin in the peripheral microcirculation. Late CB2R inhibition with AM630 also improved the peripheral leukocyte response to endotoxin and did not exacerbate the extent of brain injury. Discussion: CB2R activation has the potential to mitigate CNS injury as an early treatment by limiting neuroinflammation and preventing the development of CIDS. At the later stage with already-established CIDS, treatment may require dampening CB2R activation to improve the patient's outcome.


Assuntos
Canabinoides , Doenças Neuroinflamatórias , Animais , Sistema Nervoso Central , Modelos Animais de Doenças , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Canabinoides
8.
Diagnostics (Basel) ; 12(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35054185

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic condition causing bladder pressure and pain. The condition is of unknown etiology and is often accompanied by other symptoms, including chronic pelvic pain, increased urinary urgency, and frequency. There is no definitive diagnosis for IC/BPS, and treatment options are currently limited to physical therapy and medications to help alleviate symptoms. The endogenous cannabinoid system (ECS) is an important regulator of numerous physiological systems, including the urinary system. Modulations of the ECS have been shown to be beneficial for IC/BPS-associated pain and inflammation in rodents. As an attempt to identify potential biomarkers for IC/BPS, we reviewed experimental studies where the components of the ECS have been quantified in experimental models of IC/BPS. Further investigations using well-defined animal models and patients' data are required to obtain stronger evidence regarding the potential for ECS components to be definitive biomarkers for IC/BPS.

9.
PLoS One ; 15(6): e0233856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492073

RESUMO

The enzyme ß-glucosidase 2 (GBA2) is clinically relevant because it is targeted by the drug miglustat (Zavesca®) and because it is involved in inherited diseases. Mutations in the GBA2 gene are associated with two neurological diseases on the ataxia-spasticity spectrum, hereditary spastic paraplegia 46 (SPG46) and Marinesco-Sjögren-like syndrome (MSS). To establish how GBA2 mutations give rise to neurological pathology, we have begun to investigate mutant forms of GBA2 encoded by disease-associated GBA2 alleles. Previously, we found that five GBA2 missense mutants and five C-terminally truncated mutants lacked enzyme activity. Here we have examined the cellular locations of wild-type (WT) and mutant forms of GBA2 by confocal and electron microscopy, using transfected cells. Similar to GBA2-WT, the D594H and M510Vfs*17 GBA2 mutants were located at the plasma membrane, whereas the C-terminally truncated mutants terminating after amino acids 233 and 339 (GBA2-233 and -339) were present in the mitochondrial matrix, induced mitochondrial fragmentation and loss of mitochondrial transmembrane potential. Deletional mutagenesis indicated that residues 161-200 are critical for the mitochondrial fragmentation of GBA2-233 and -339. Considering that the mitochondrial fragmentation induced by GBA2-233 and -339 is consistently accompanied by their localization to the mitochondrial matrix, our deletional analysis raises the possibility that that GBA2 residues 161-200 harbor an internal targeting sequence for transport to the mitochondrial matrix. Altogether, our work provides new insights into the behaviour of GBA2-WT and disease-associated forms of GBA2.


Assuntos
Glucosilceramidase/metabolismo , Mitocôndrias/patologia , Alelos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Glucosilceramidase/genética , Humanos , Potencial da Membrana Mitocondrial , Microscopia Eletrônica , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Mutação , Paraplegia Espástica Hereditária/genética , Degenerações Espinocerebelares/genética
10.
Zebrafish ; 13(3): 177-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26909767

RESUMO

The small-molecular compound miglustat (N-butyldeoxynojirimycin, Zavesca(®)) has been approved for clinical use in type 1 Gaucher disease and Niemann-Pick type C disease, which are disorders caused by dysfunction of the endosomal-autophagic-lysosomal system. Miglustat inhibits a number of enzymes involved in glycoconjugate and glycan metabolism, including ß-glucosidase 2 (GBA2), which is exceptionally sensitive to inhibition by miglustat. GBA2 is a glucosylceramide-degrading enzyme that is located on the plasma membrane/endoplasmic reticulum, and is distinct from the lysosomal enzyme glucocerebrosidase (GBA). Various strands of evidence suggest that inhibition of GBA2 contributes to the therapeutic benefits of miglustat. To further explore the pharmacology and biology of GBA2, we investigated whether the zebrafish homolog of GBA2 has similar enzymatic properties and pharmacological sensitivities to its human counterpart. We established that zebrafish has endogenous ß-glucosidase activity toward lipid- and water-soluble GBA2 substrates, which can be inhibited by miglustat, N-butyldeoxygalactonojirimycin, and conduritol B epoxide. ß-Glucosidase activities with highly similar characteristics were expressed in cells transfected with the zebrafish gba2 cDNA and in cells transfected with the human GBA2 cDNA. These results provide a foundation for the use of zebrafish in screening GBA2-targeting molecules, and for wider studies investigating GBA2 biology.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Proteínas de Peixe-Zebra/metabolismo , beta-Glucosidase/metabolismo , 1-Desoxinojirimicina/farmacologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Inibidores de Glicosídeo Hidrolases/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , beta-Glucosidase/genética
11.
Biochem Cell Biol ; 93(6): 581-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26393781

RESUMO

Glycosphingolipids (GSLs) are hybrid molecules consisting of the sphingolipid ceramide linked to a mono- or oligo-saccharide. In comparison to other membrane lipids, the family of GSLs stands out because of the extensive variation in the carbohydrate headgroup. GSLs are cell surface binding partners, in cis with growth factor receptors, and in trans with bacterial toxins and viruses, and are among the host-derived membrane components of viral particles, including those of HIV. In spite of their biological relevance, GSL profiles of commonly used cell lines have been analyzed to different degrees. Here, we directly compare the GSL complements from CHO-K1, COS-7, HeLa, HEK-293, HEPG2, Jurkat, and SH-SY5Y cells using an HPLC-based method requiring modest amounts of material. Compared to previous studies, the HPLC-based analyses provided more detailed information on the complexity of the cellular GSL complement, qualitatively as well as quantitatively. In particular for cells expressing multiple GSLs, we found higher numbers of GSL species, and different levels of abundance. Our study thus extends our knowledge of biologically relevant lipids in widely used cell lines.


Assuntos
Membrana Celular/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/química , Células Cultivadas , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Cricetulus , Corantes Fluorescentes/química , Glicosídeo Hidrolases/metabolismo , Glicoesfingolipídeos/química , Hirudo medicinalis/enzimologia , Humanos , Hidrólise , Metabolômica/métodos , Camundongos , Microtecnologia/métodos , Estrutura Molecular , Ratos , Espectrometria de Fluorescência , ortoaminobenzoatos/química
12.
Biochem Biophys Res Commun ; 465(1): 35-40, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26220345

RESUMO

Glucosylceramide is a membrane glycolipid made up of the sphingolipid ceramide and glucose, and has a wide intracellular distribution. Glucosylceramide is degraded to ceramide and glucose by distinct, non-homologous enzymes, including glucocerebrosidase (GBA), localized in the endolysosomal pathway, and ß-glucosidase 2 (GBA2), which is associated with the plasma membrane and/or the endoplasmic reticulum. It is well established that mutations in the GBA gene result in endolysosomal glucosylceramide accumulation, which triggers Gaucher disease. In contrast, the biological significance of GBA2 is less well understood. GBA2-deficient mice present with male infertility, but humans carrying mutations in the GBA2 gene are affected with a combination of cerebellar ataxia and spastic paraplegia, as well as with thin corpus callosum and cognitive impairment (SPastic Gait locus #46, SPG46). To improve our understanding of the biochemical consequences of the GBA2 mutations, we have evaluated five nonsense and five missense GBA2 mutants for their enzyme activity. In transfected cells, the mutant forms of GBA2 were present in widely different amounts, ranging from overabundant to very minor, compared to the wild type enzyme. Nevertheless, none of the GBA2 mutant cDNAs raised the enzyme activity in transfected cells, in contrast to the wild-type enzyme. These results suggest that SPG46 patients have a severe deficit in GBA2 activity, because the GBA2 mutants are intrinsically inactive and/or reduced in amount. This assessment of the expression levels and enzyme activities of mutant forms of GBA2 offers a first insight in the biochemical basis of the complex pathologies seen in SPG46.


Assuntos
Ataxia Cerebelar/genética , Mutação , Paraplegia Espástica Hereditária/genética , beta-Glucosidase/genética , Animais , Células COS , Linhagem Celular Tumoral , Ataxia Cerebelar/enzimologia , Ataxia Cerebelar/patologia , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/patologia , Ensaios Enzimáticos , Regulação da Expressão Gênica , Glucosilceramidase , Células HeLa , Humanos , Lisossomos/enzimologia , Lisossomos/patologia , Neurônios/enzimologia , Neurônios/patologia , Plasmídeos/química , Plasmídeos/metabolismo , Transdução de Sinais , Paraplegia Espástica Hereditária/enzimologia , Paraplegia Espástica Hereditária/patologia , Transfecção , Transgenes , beta-Glucosidase/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA