Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38549520

RESUMO

Overproduction of reactive nitrogen and oxygen species (RNS and ROS) has been linked to the pathogenesis of diabetes, hypertension, hyperlipidemia, stroke, angina, and other cardiovascular diseases. These species are produced in part by the mitochondrial respiratory chain, NADPH oxidase, and xanthine oxidase. RNS and ROS both contribute to oxidative stress, which is necessary for the development of cardiovascular disorders. In addition to ROS species like hydroxyl ion, hydrogen peroxide, and superoxide anion, RNS species like nitric oxide, peroxynitrous acid, peroxynitrite, and nitrogen dioxide radicals have also been linked to a number of cardiovascular conditions. They promote endothelial dysfunction, vascular inflammation, lipid peroxidation, and oxidative damage, all of which contribute to the development of cardiovascular pathologies. It's crucial to understand the mechanisms that result in the production of RNS and ROS in order to identify potential therapeutic targets. Redox biomarkers serve as indicators of oxidative stress, making them crucial tools for diagnosing and predicting cardiovascular states. The advancements in proteomics, metabolomics, genomics, and transcriptomics have made the identification and detection of these small molecules possible. The following redox biomarkers are notable examples: 3-nitrotyrosine, 4-hydroxy-2-nonenal, 8- iso-prostaglandin F2, 8-hydroxy-2-deoxyguanosine, malondialdehyde, Diacron reactive oxygen metabolites, total thiol, and specific microRNAs (e.g. miRNA199, miRNA21, miRNA1254, miRNA1306-5p, miRNA26b-5p, and miRNA660-5p) are examples. Although redox biomarkers have great potential, their clinical applicability faces challenges. Redox biomarkers frequently have a short half-life and exist in small quantities in the blood, making them challenging to identify and measure. The interpretation of biomarker data may also be influenced by confounding factors and the complex interplay of various oxidative stress pathways. Therefore, in-depth validation studies and the development of sensitive and precise detection methods are needed to address these problems. In the search for redox biomarkers, cutting-edge techniques like mass spectrometry, immunoassays, and molecular diagnostics are applied. New platforms and technologies have made it possible to accurately detect and monitor redox biomarkers, which facilitates their use in clinical settings. Our expanding knowledge of RNS and ROS involvement in cardiovascular disorders has made it possible to develop redox biomarkers as diagnostic and prognostic tools. Overcoming the challenges associated with their utility and utilizing advanced detection techniques, which will improve their clinical applicability, will ultimately benefit the management and treatment of cardiovascular conditions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37817658

RESUMO

A diabetic wound is one of the major complications arising from hyperglycemia, neuropathy, and oxidative stress in diabetic patients. Finding effective treatments for diabetic wounds has been difficult owing to the complex pathophysiology of diabetic wound environments. Chronic wounds are notoriously difficult to treat with conventional wound care methods. In recent years, polyphenols found in plants have received much interest as a potential treatment for diabetic wounds. Their key benefits are their safety and the fact that they act through many molecular routes to treat diabetic wounds. However, problems with their formulation development, including lipophilicity, light sensitivity, limited membrane permeability, rapid systemic elimination, and enzymatic degradation, prevented them from gaining clinical attention. This article highlights and discusses the mechanism of polyphenols and various polyphenol-based drug delivery systems used till now to treat diabetic wounds. The consideration that should be taken in polyphenols-based nano-formulations and their prospect for diabetic wounds are also discussed briefly.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Materiais Biocompatíveis/farmacologia , Diabetes Mellitus/tratamento farmacológico , Cicatrização , Sistemas de Liberação de Medicamentos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37996726

RESUMO

This research work is to evaluate spanlastic-loaded raloxifene (RLX) nanogel administration via the transdermal route to avoid its hepatic metabolism and to enhance the bioavailability for better management of osteoporosis. RLX-loaded spanlastic nanogel was prepared and characterized for its viscosity, pH, spreadability, and texture profile. The formulation was applied on the skin surface of the animal for pharmacokinetic evaluation, and later, the efficacy of the formulation was assessed in ovariectomized female Wistar rats. The nanogel was obtained with a viscosity (2552.66 ± 30.61 cP), pH (7.1 ± 0.1), and spreadability (7.1 ± 0.2 cm). The texture properties, cohesiveness, and adhesiveness of the nanogel showed its suitability for transdermal application. Nanogel showed no sign of edema and erythema in the skin irritation test which revealed its safety for transdermal application. The t1/2 obtained for RLX-spanlastic nanogel (37.02 ± 0.59 h) was much higher than that obtained for RLX-oral suspension (14.43 h). The relative bioavailability was found to be 215.96% for RLX-spanlastic nanogel, and the drug and formulation did not show any toxicity in any of the vital organs, as well as no hematological changes occurring in blood samples. In microarchitectural measurement, RLX-spanlastic nanogel exhibited no unambiguous deviations along with improved bone mineral density compared to the RLX suspension treated group. Transdermal administration of RLX-spanlastic nanogel showed significant improvement of drug bioavailability (approx. twice to oral administration) without any toxic effect in the treated rats. Hence, spanlastic nanogel could be a better approach to deliver RLX via transdermal route for the management of osteoporosis.

4.
Antibiotics (Basel) ; 12(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37887211

RESUMO

Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ is a diarylquinoline derivative and exhibits targeted action on mycobacterium tuberculosis, but due to poor solubility, the desired therapeutic action is not achieved. Objective: To develop a QbD-based self-nanoemulsifying drug delivery system of bedaquiline using various oils, surfactants, and co-surfactants. Methods: The quality target product profile (QTPP) and critical quality attributes (CQAs) were identified with a patient-centric approach, which facilitated the selection of critical material attributes (CMAs) during pre-formulation studies and initial risk assessment. Caprylic acid as a lipid, propylene glycol as a surfactant, and Transcutol-P as a co-surfactant were selected as CMAs for the formulation of bedaquiline fumarate SNEDDS. Pseudo-ternary phase diagrams were constructed to determine the optimal ratio of oil and Smix. To optimize the formulation, a Box-Benkhen design (BBD) was used. The optimized formulation (BDQ-F-SNEDSS) was further evaluated for parameters such as droplet size, polydispersity index (PDI), percentage transmittance, dilution studies, stability studies, and cell toxicity through the A549 cell. Results: Optimized BDQ-F-SNEDDS showed well-formed droplets of 98.88 ± 2.1 nm with a zeta potential of 21.16 mV. In vitro studies showed enhanced drug release with a high degree of stability at 25 ± 2 °C, 60 ± 5% and 40 ± 2 °C, 75 ± 5%. Furthermore, BDQ-F-SNEDDS showed promising cell viability in A549 cells, indicating BDQ-F-SNEDDS as a safer formulation for oral delivery. Conclusion: Finally, it was concluded that the utilization of a QbD approach in the development of BDQ-F-loaded SNEDDS offers a promising strategy to improve the biopharmaceutical properties of the drug, resulting in potential cost and time savings.

5.
Saudi J Biol Sci ; 30(9): 103778, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663396

RESUMO

Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of -20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0-24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.

6.
ACS Omega ; 8(33): 30057-30067, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636934

RESUMO

The present study involves the development of a reverse-phase HPLC method employing the quality-by-design methodology for the estimation of posaconazole and hemp seed oil simultaneously in nanomicelles formulation. The successful separation of posaconazole and hemp seed oil was achieved together, and this is the first study to develop and quantify posaconazole and hemp seed oil nanomicelles with linoleic acid as the internal standard and developed a dual drug analytical method employing a quality-by-design approach. The study was performed on a Shimadzu Prominence-I LC-2030C 3D Plus HPLC system with a PDA detector and the Shim-pack Solar C8 column (250 mm × 4.6 mm × 5 µm) for analysis with a mobile phase ratio of methanol:water (80:20% v/v) maintaining the flow rate of 1.0 mL/min. The final wavelength was selected as 240 nm and the elution of hemp seed oil and posaconazole was obtained at 2.7 and 4.6 min, respectively, with a maximum run time of 8.0 min. Box Behnken design was employed to optimize the method, keeping the retention time, peak area, and theoretical plates as dependent variables, while the mobile phase composition, flow rate, and wavelengths were chosen as independent variables. Parameters such as specificity, accuracy, robustness, linearity, sensitivity, precision, ruggedness, and forced degradation study were performed to validate the method. The calibration curves of posaconazole and hemp seed oil were determined to be linear throughout the range for concentration. The suggested approach can be effectively utilized for estimating the content of drugs from their nanoformulation and proved suitable for both in vivo and in vitro research.

7.
Int J Pharm ; 644: 123335, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37597597

RESUMO

Osteoporosis is a fatal bone-wearing malady and a substantial reason behind the impermanence of human life and economic burden. Risedronate Sodium along with Ursolic acid has been studied to ameliorate osteoporosis. To bypass problems associated with bioavailability, we have developed a microneedle transdermal patch loaded with optimized formulation nanotransfersomes. It was optimized using three factor, three-level Central composite design with independent variables namely, the concentration of phospholipid, surfactant, and sonication time on dependent variables (vesicle size, entrapment efficiency and Polydispersity index). Vesicles of size 271.9 ± 8.45 nm with PDI 0.184 ± 0.01, having entrapment efficiency of 86.12 ± 5.20% and 85.65 ± 4.88% for RIS and UA respectively were observed. In vitro release study showed the sustained release pattern with 78.16 ± 1.12% and 75.72 ± 1.01% release of RIS and UA respectively. Dissolving MN patch prepared from gelatin was found to have good strength and folding endurance with uniform drug content (98.68 ± 0.004%). Ex vivo permeation study revealed that up to 80% of the drug can be permeated within 24 h. CLSM analysis was also performed to show penetration of RU-NTRs. From the results obtained, we can conclude that dissolving MN patch loaded with RU-NTRs has great potential than its conventional counterpart.


Assuntos
Osteoporose , Adesivo Transdérmico , Humanos , Ácido Risedrônico , Sistemas de Liberação de Medicamentos , Ácido Ursólico
8.
Drug Deliv Transl Res ; 13(11): 2739-2766, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37261602

RESUMO

Breast cancer due to the unpredictable and complex etiopathology combined with the non-availability of any effective drug treatment has become the major root of concern for oncologists globally. The number of women affected by the said disease state is increasing at an alarming rate attributed to environmental and lifestyle changes indicating at the exploration of a novel treatment strategy that can eradicate this aggressive disease. So far, it is treated by promising nanomedicine monotherapy; however, according to the numerous studies conducted, the inadequacy of these nano monotherapies in terms of elevated toxicity and resistance has been reported. This review, therefore, puts forth a new multimodal strategic approach to lipid-based nanoparticle-mediated combination drug delivery in breast cancer, emphasizing the recent advancements. A basic overview about the combination therapy and its index is firstly given. Then, the various nano-based combinations of chemotherapeutics involving the combination delivery of synthetic and herbal agents are discussed along with their examples. Further, the recent exploration of chemotherapeutics co-delivery with small interfering RNA (siRNA) agents has also been explained herein. Finally, a section providing a brief description of the delivery of chemotherapeutic agents with monoclonal antibodies (mAbs) has been presented. From this review, we aim to provide the researchers with deep insight into the novel and much more effective combinational lipid-based nanoparticle-mediated nanomedicines tailored specifically for breast cancer treatment resulting in synergism, enhanced antitumor efficacy, and low toxic effects, subsequently overcoming the hurdles associated with conventional chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Terapia Combinada , Nanomedicina , Lipídeos , Sistemas de Liberação de Medicamentos
9.
Artigo em Inglês | MEDLINE | ID: mdl-37157219

RESUMO

Cannabis sativa is widely used as a folk medicine in many parts of the globe and has been reported to be a treasure trove of phytoconstituents, including cannabinoids, terpenoids, and flavonoids. Accumulating evidence from various pre-clinical and clinical studies revealed the therapeutic potential of these constituents in various pathological conditions, including chronic pain, inflammation, neurological disorders, and cancer. However, the psychoactive effect and addiction potential associated with cannabis use limited its clinical application. In the past two decades, extensive research on cannabis has led to a resurgence of interest in the clinical application of its constituents, particularly cannabinoids. This review summarizes the therapeutic effect and molecular mechanism of various phytoconstituents of cannabis. Furthermore, recently developed nanoformulations of cannabis constituents have also been reviewed. Since cannabis is often associated with illicit use, regulatory aspects are of vital importance and this review therefore also documented the regulatory aspects of cannabis use along with clinical data and commercial products of cannabis.

10.
Curr Pharm Des ; 29(17): 1326-1340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37254541

RESUMO

Apigenin is a natural polyphenolic compound widely distributed as a glycoside in fruits and vegetables. Apigenin belongs to BCS class II with low solubility, which leads to poor absorption and bioavailability. It is mostly absorbed from the small intestine and extensively metabolized through glucuronidation and sulfation processes. Apigenin is known for its antioxidant and anti-inflammatory properties. It is also used as a chemopreventive drug in the management of various cancers. Pharmacological effects of apigenin have a wide range, from neuroprotective to treating renal disorders. Apigenin is non-toxic in nature and acts through various pathways (JAK/STAT, Wnt/ß-catenin, MAPK/ERK, PI3K/Akt, and NF-κB) to exert its therapeutic efficacy. Numerous formulations have been researched to enhance the bioavailability and pharmacological effects of apigenin. Combinatorial therapies are also researched to minimize the side-effects of chemotherapeutic drugs. The review presents pharmacokinetic and pharmacodynamic aspects of apigenin. Apigenin is safe for the treatment and management of numerous diseases. It can be easily incorporated into nanoformulation alone or in combination with other active ingredients to widen the therapeutic window. This review intends to help in drug optimization and therapeutic efficacy maximization for future studies.


Assuntos
Anticarcinógenos , Neoplasias , Humanos , Apigenina/farmacologia , Apigenina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico
11.
Expert Opin Drug Deliv ; 20(6): 739-755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038271

RESUMO

INTRODUCTION: Transdermal drug delivery is limited by the stratum corneum, inhibiting the therapeutic potential of the permeants. Microneedles (MNs) have opened new frontiers in transdermal drug delivery systems. These micro-sized needles offer painless and accentuated delivery of drugs even with high molecular weights. AREAS COVERED: The review embodies drug delivery strategies with MNs with a description of MN types and fabrication techniques using various materials. The application of MN is not limited to drug delivery, but it also encompasses in vaccine delivery, diagnosis, phlebotomy, and even in the cosmetic industry. The review also tabulates MN-based marketed formulations. In a nutshell, we aim to present a panoramic view of MNs, including the design, applications, and regulatory aspects of MN. EXPERT OPINION: With the availability of numerous materials at the disposal of pharmaceutical scientists; the MN-based drug delivery technology has offered significant interventions toward the management of chronic maladies, including cardiovascular disorders, diabetes, asthma, mental depression, etc. As happens with any new technology, there are concerns with MN also such as biocompatibility issues with the material used for the fabrication. Nevertheless, the pharmaceutical industry must strive for preparing harmless, efficient, and cost-effective MN-based delivery systems for wider acceptance and patient compliance.


Assuntos
Epiderme , Agulhas , Humanos , Microinjeções , Administração Cutânea , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Pele
12.
Drug Deliv Transl Res ; 13(3): 883-913, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36414929

RESUMO

Disodium pamidronate, a second-generation bisphosphonate is a potent drug for the treatment of osteoporosis, which has been very well established by previous literature. It has very low oral permeability, leading to its low oral bioavailability, which restrict this drug to being administered orally. Therefore, the present research work includes the development of an orally effective nanoformulation of pamidronate. In this work, disodium pamidronate was complexed with phospholipon 90G for the enhancement of permeability and to investigate the phospholipon 90G-tagged pamidronate complex-loaded SNEDDS for oral delivery with promises of enhanced bioavailability and anti-osteoporotic activity. The rational design and optimization was employed using Central Composite Design (Design Expert® 12, software) to optimize nanoformulation parameters. In this work, a commercially potential self nano-emulsifying drug delivery system (SNEDDS) has been developed and evaluated for improved oral bioavailability and better clinical acceptance. The hot micro-emulsification and ultracentrifugation method with vortex mixing was utilized for effective tagging of phospholipon 90G with pamidronate and then loading into the SNEDDS nanocarrier. The optimized Pam-PLc SNEDDS formulation was characterized for particle size, PDI, and zeta potential and found to be 56.38 ± 1.37 nm, 0.218 ± 0.113, and 22.41 ± 1.14 respectively. Also, a 37.9% improved bioavailability of pamidronate compared to marketed tablet was observed. Similarly, in vivo pharmacokinetic studies suggest a 31.77% increased bone density and significant enhanced bone biomarkers compared to marketed tablets. The developed formulation is safe and effectively overcomes anti-osteoporosis promises with improved therapeutic potential. This work provides very significant achievements in postmenopausal osteoporosis treatment and may lead to possible use of nanotherapeutic-driven emerging biodegradable carriers-based drug delivery.


Assuntos
Nanopartículas , Osteoporose Pós-Menopausa , Feminino , Humanos , Fosfolipídeos , Pamidronato , Osteoporose Pós-Menopausa/tratamento farmacológico , Solubilidade , Emulsões , Administração Oral , Sistemas de Liberação de Medicamentos/métodos , Disponibilidade Biológica , Tamanho da Partícula
13.
Biomed Chromatogr ; 37(1): e5510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36100737

RESUMO

The current research work describes the development of a rapid HPLC method for the concurrent detection of pregabalin and piperine in dual drug-loaded nanoformulations. The primary goal was to recognize the chromatographic conditions wherein propitious segregation of the integrants with quality peaks can be attained. An attempt to expound the target analytical profile was made to accomplish this goal, and critical method attributes (CMAs), viz. percentage acetonitrile content, injection volume and pH, which affect critical quality attributes (CQAs), were identified using systemic risk analysis. Box-Behnken design was employed to develop a relationship between CMAs and CQAs, which engenders an analytical design space. Efficient chromatographic separation for pregabalin and piperine was attained using an analytical C18 column and mobile phase comprising acetonitrile-water (pH 6.9; 70:30%, v/v) in an isocratic elution mode with a 1 ml/min flow rate. The elution was descried at an isosbestic wavelength of 221 nm using a photodiode array detector. The International Conference on Harmonization guidelines were adopted for the developed HPLC method. The validated HPLC method can be further utilized for the simultaneous quantification and detection of pregabalin and piperine in other lipid-based nanopharmaceuticals such as polymeric nanoparticles, nanocrystals, solid-lipid nanoparticles, metallic nanoparticles, etc., in in vitro and in vivo studies.


Assuntos
Lipídeos , Lipossomos , Cromatografia Líquida de Alta Pressão/métodos , Pregabalina , Limite de Detecção , Reprodutibilidade dos Testes , Acetonitrilas
14.
Curr Mol Med ; 23(9): 876-888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986537

RESUMO

Breast cancer is the most commonly diagnosed type of cancer and ranks second among cancer that leads to death. From becoming the foremost reason for global concern, this multifactorial disease is being treated by conventional chemotherapies that are associated with severe side effects, with chemoresistance being the ruling reason. Exemestane, an aromatase inhibitor that has been approved by the US FDA for the treatment of breast cancer in post-menopausal women, acts by inhibiting the aromatase enzyme, in turn, inhibiting the production of estrogen. However, the clinical application of exemestane remains limited due to its poor aqueous solubility and low oral bioavailability. Furthermore, the treatment regimen of exemestane often leads to thinning of bone mineral density. Thymoquinone, a natural compound derived from the oil of the seeds of Nigella sativa Linn, possesses the dual property of being a chemosensitizer and chemotherapeutic agent. In addition, it has been found to exhibit potent bone protection properties, as evidenced by several studies. To mitigate the limitations associated with exemestane and to deliver to the cancerous cells overcoming chemoresistance, the present hypothesis has been put forth, wherein a natural chemosensitizer and chemotherapeutic agent thymoquinone will be incorporated into a lipid nanocarrier along with exemestane for combinatorial delivery to cancer cells. Additionally, thymoquinone being bone protecting will help in ousting the untoward effect of exemestane at the same time delivering it to the required malignant cells, safeguarding the healthy cells, reducing the offsite toxicity, and providing potent synergistic action.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Nanomedicina , Inibidores da Aromatase/efeitos adversos , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico
15.
Dermatol Pract Concept ; 12(4): e2022202, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36534578

RESUMO

Introduction: Onychomycosis is a fungal disorder of the nail which afflicts 5% of the population worldwide. The disease is strenuous to cure as it is chronic, hard to eliminate and tends to recur. Topical therapy is at the forefront for the treatment of many disorders of nail. However, the success rate of topical therapy has been halted owing to the poor permeation of topical therapeutics across densely keratinized nail barrier. Therefore, ungual drug permeation must be improved for an effective topical therapy. An approach to achieve this goal would be the use of terpenes from natural sources as potential penetration enhancers. Objective: This study is aimed to explore the effectiveness of some novel terpenes as potential penetration enhancers on transungual delivery of terbinafine. Methods: Ex-vivo permeation studies were performed by sopping the nail clippings of healthy human volunteers in control and working solutions containing terbinafine (5mg/ml) per se and terbinafine (5mg/ml) with 6% of each terpenes including lavandulol, safranal, rose oxide, limonene, 3-methyl-2-butene-1-ol, and linalool respectively for 48 hours. The terbinafine concentration in nail samples was determined using a HPLC (High Performance Liquid Chromatography method. Results: Statistical analysis showed that studied terpenes increase transungual penetration of terbinafine in the following order: linalool > rose oxide > 3-methyl-2-butene-1-ol > safranal > limonene > lavandulol acetate. Accordingly, linalool was found to be the most effective penetration enhancer for the transungual delivery of terbinafine. Conclusions: It is concluded that linalool can be used as safe and potential penetration enhancer for enhancing the transungual delivery of terbinafine for onychomycosis.

16.
Eur J Pharm Biopharm ; 180: 269-280, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36272654

RESUMO

Treatment of skin cancer demands targeted delivery without minimal systemic circulation for maximum therapeutic window. Dermal delivery with nano-formulation offers such advantages. Therefore, present study aims to formulate Lyotropic liquid crystalline nanoparticles (LLC NPs) loaded with Apigenin (API) for dermal delivery using quality by design (QbD) approach for effective permeation resulting in improved bioavailability. Apigenin loaded LLC NPs (API-LLC NPs) were formulated and optimized by applying risk assessment and design of experiments (Box-Behnken Design). The optimized API-LLC NPs showed particle size, PdI and entrapment efficiency of 287.7 ± 9.53 nm, 0.152 ± 0.051 and 80 ± 2.2 % respectively. The optimized API-LLC NPs were characterized for morphology and crystallinity using optical microscopy, TEM, DSC and PXRD. In vitro and ex vivo studies showed sustained release and better permeation profile. CLSM study presented better penetration of API-LLC NPs which were quantitatively confirmed with dermatokinetics. Cytotoxic efficacy assessed on B16F10 cell lines showed a dose-dependent efficacy of API-LLC NPs with an IC50 of 45.74 ± 0.05. In a nutshell, the developed API-LLC NPs exhibit excellent potential for targeting deeper skin layers thereby can be considered a promising topical drug delivery nanocarrier in the treatment and management of skin cancer.


Assuntos
Nanopartículas , Neoplasias Cutâneas , Humanos , Apigenina , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Neoplasias Cutâneas/tratamento farmacológico , Portadores de Fármacos/química , Liberação Controlada de Fármacos
17.
Int J Biol Macromol ; 221: 435-445, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36067850

RESUMO

This study aims to develop chitosan-coated PLGA nanoparticles intended for nose-to-brain delivery of carmustine. Formulations were prepared by the double emulsion solvent evaporation method and optimized by using Box-Behnken Design. The optimized nanoparticles were obtained to satisfactory levels in terms of particle size, PDI, entrapment efficiency, and drug loading. In vitro drug release and ex-vivo permeation showed sustained release and enhanced permeability (approx. 2 fold) of carmustine compared to drug suspension. The AUC0-t of brain obtained with carmustine-loaded nanoparticles via nasal administration in Albino Wistar rats was 2.8 and 14.7 times that of intranasal carmustine suspension and intravenous carmustine, respectively. The MTT assay on U87 MG cell line showed a significant decrease (P < 0.05) in the IC50 value of the formulation (71.23 µg ml-1) as compared to drug suspension (90.02 µg ml-1).These findings suggest chitosan coated nanoparticles could be used to deliver carmustine via intranasal administration to treat Glioblastoma multiforme.


Assuntos
Quitosana , Glioblastoma , Nanopartículas , Animais , Ratos , Administração Intranasal , Quitosana/metabolismo , Carmustina/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Portadores de Fármacos/metabolismo , Encéfalo/metabolismo , Tamanho da Partícula , Ratos Wistar , Sistemas de Liberação de Medicamentos/métodos
18.
Trop Parasitol ; 12(1): 48-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923272

RESUMO

Background: Strongyloides stercoralis, the causative agent of strongyloidiasis, is a parasitic worm that has larvae capable of reinfecting the same host. This nematode infection is therefore difficult to treat and to achieve total cure. Information about genetic variation and differences in drug susceptibility between strains is needed to improve treatment outcomes. Aim: To develop a polymerase chain reaction (PCR) to identify the intra-species variation among 13 S. stercoralis isolates collected from Bangladesh, USA and Australia. Material & Methods: PCR assays were designed by using primers targeting S. stercoralis internal transcribed spacer (ITS) regions 1 and 2. Sequence data generated by these PCR products were compared to the existing ITS1/2, 18S and 28S rRNA gene sequences in GenBank for phylogenetic analysis. Results: Intra-species single nucleotide polymorphisms (SNPs) were identified in ITS1 and in the 5.8S rRNA gene. The generated phylogram grouped the 13 isolates into dog, Orangutan and human clusters. Conclusion: This method could be used as an epidemiological tool to study strain differences in larger collections of S. stercoralis isolates. The study forms the basis for further development of an ITS-based assay for S. stercoralis molecular epidemiological studies.

19.
AAPS PharmSciTech ; 23(4): 112, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411425

RESUMO

Nanotechnology-based drug delivery system has played a very crucial role in overpowering the tasks allied with the conventional dosage form. Spanlastics, an elastic nanovesicle with an ability to carry wide range of drug molecules, make it a potential drug delivery carrier. Spanlastics have extended rising curiosity for diverse sort of route of administration. They can squeeze themselves through the skin pore due to elastic and deformable nature which makes them favorable for transdermal delivery. Spanlastics consist of non-ionic surfactant or blend of surfactants. Many researchers proved that spanlastics have been significantly augment therapeutic efficacy, enhanced drug bioavailability, and reduced drug toxicity. This review summarizes various vesicular systems, composition and structure of spanlastics, advantages of spanlastics over other drug delivery systems, and mechanism of drug penetration through skin. It also gives a brief on different types of drug encapsulated in spanlastics vesicles for the treatment of various diseases.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Administração Cutânea , Portadores de Fármacos/química , Excipientes/metabolismo , Lipossomos/química , Tamanho da Partícula , Pele/metabolismo , Absorção Cutânea , Tensoativos/química
20.
J Cosmet Dermatol ; 21(10): 5103-5110, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35390220

RESUMO

BACKGROUND: Onychomycosis, the most prevailing affliction of the nail, accounts for approximately 90% of the toenail infection worldwide. Owing to this infection, the affected patients experience reduced quality of their life as its awful appearance undermines their daily activities and social interactions. Onychomycosis is notoriously strenuous to cure. Systemic therapy, though effective, possess severe complication of toxicities, contra-indication, and drug-drug interaction. Albeit topical therapy is favorable to its localized effect, its potency relates to the effective concentration of the antifungal drugs achieved at the infection site. An approach to accomplish this goal would be acquiring benefits from the terpenes as penetration enhancers from natural sources. This investigation aimed to study the effectiveness of six terpenes, namely safranal, lavandulol, rose oxide, 3-methyl-2-butene-1-ol, linalool, and limonene, as potential penetration enhancers for improved nail permeation of fluconazole through the human nail. METHODS: Ex vivo permeation experiments were carried out by soaking the nail clippings of human volunteers in control and working solutions containing fluconazole (5 mg/ml) per se and fluconazole (5 mg/ml) with 6% of each terpene, including safranal, lavandulol, rose oxide, 3-methyl-2-butene-1-ol, linalool, and limonene, respectively, for 48 h. The amount of fluconazole in nail clippings was quantified using an HPLC method. RESULTS: Statistical analysis showed that fluconazole transungual permeation was influenced by the studied terpenes in the following order: safranal >lavandulol acetate >limonene > rose oxide (p-value >0.05) while the other terpenes showed no significant difference with the control group and safranal represents as the most effective permeation enhancer for the transungual delivery of fluconazole. CONCLUSION: It is concluded that the safranal can be successfully used as a safe and potential permeation enhancer to enhance the transungual delivery of fluconazole for the treatment of onychomycosis.


Assuntos
Onicomicose , Humanos , Onicomicose/tratamento farmacológico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Limoneno/farmacologia , Limoneno/uso terapêutico , Administração Tópica , Permeabilidade , Terpenos/farmacologia , Terpenos/uso terapêutico , Unhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA