Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 631(8019): 189-198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898278

RESUMO

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Assuntos
COVID-19 , Nasofaringe , SARS-CoV-2 , Análise de Célula Única , Linfócitos T , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Nasofaringe/virologia , Nasofaringe/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Interferons/imunologia , Interferons/metabolismo , Masculino , Feminino , Macrófagos/imunologia , Macrófagos/virologia , Replicação Viral , Células Epiteliais/virologia , Células Epiteliais/imunologia , Fatores de Tempo , Adulto
2.
Bioinformatics ; 38(Suppl 1): i229-i237, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758809

RESUMO

SUMMARY: Sequences of proteins evolve by accumulating substitutions together with insertions and deletions (indels) of amino acids. However, it remains a common practice to disconnect substitutions and indels, and infer approximate models for each of them separately, to quantify sequence relationships. Although this approach brings with it computational convenience (which remains its primary motivation), there is a dearth of attempts to unify and model them systematically and together. To overcome this gap, this article demonstrates how a complete statistical model quantifying the evolution of pairs of aligned proteins can be constructed using a time-parameterized substitution matrix and a time-parameterized alignment state machine. Methods to derive all parameters of such a model from any benchmark collection of aligned protein sequences are described here. This has not only allowed us to generate a unified statistical model for each of the nine widely used substitution matrices (PAM, JTT, BLOSUM, JO, WAG, VTML, LG, MIQS and PFASUM), but also resulted in a new unified model, MMLSUM. Our underlying methodology measures the Shannon information content using each model to explain losslessly any given collection of alignments, which has allowed us to quantify the performance of all the above models on six comprehensive alignment benchmarks. Our results show that MMLSUM results in a new and clear overall best performance, followed by PFASUM, VTML, BLOSUM and MIQS, respectively, amongst the top five. We further analyze the statistical properties of MMLSUM model and contrast it with others. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aminoácidos , Modelos Estatísticos , Algoritmos , Sequência de Aminoácidos , Benchmarking
3.
Bioinformatics ; 38(Suppl 1): i255-i263, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758808

RESUMO

MOTIVATION: Alignments are correspondences between sequences. How reliable are alignments of amino acid sequences of proteins, and what inferences about protein relationships can be drawn? Using techniques not previously applied to these questions, by weighting every possible sequence alignment by its posterior probability we derive a formal mathematical expectation, and develop an efficient algorithm for computation of the distance between alternative alignments allowing quantitative comparisons of sequence-based alignments with corresponding reference structure alignments. RESULTS: By analyzing the sequences and structures of 1 million protein domain pairs, we report the variation of the expected distance between sequence-based and structure-based alignments, as a function of (Markov time of) sequence divergence. Our results clearly demarcate the 'daylight', 'twilight' and 'midnight' zones for interpreting residue-residue correspondences from sequence information alone. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aminoácidos , Proteínas , Algoritmos , Sequência de Aminoácidos , Proteínas/química , Reprodutibilidade dos Testes , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
4.
Bioinformatics ; 35(14): i360-i369, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510703

RESUMO

The information criterion of minimum message length (MML) provides a powerful statistical framework for inductive reasoning from observed data. We apply MML to the problem of protein sequence comparison using finite state models with Dirichlet distributions. The resulting framework allows us to supersede the ad hoc cost functions commonly used in the field, by systematically addressing the problem of arbitrariness in alignment parameters, and the disconnect between substitution scores and gap costs. Furthermore, our framework enables the generation of marginal probability landscapes over all possible alignment hypotheses, with potential to facilitate the users to simultaneously rationalize and assess competing alignment relationships between protein sequences, beyond simply reporting a single (best) alignment. We demonstrate the performance of our program on benchmarks containing distantly related protein sequences. AVAILABILITY AND IMPLEMENTATION: The open-source program supporting this work is available from: http://lcb.infotech.monash.edu.au/seqmmligner. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Compressão de Dados , Sequência de Aminoácidos , Modelos Estatísticos , Probabilidade , Proteínas , Alinhamento de Sequência , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA