Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Crit Care Med (Targu Mures) ; 9(2): 106-115, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37593252

RESUMO

Background: Pandrug-resistant Klebsiella pneumoniae ventilator associated pneumonia (VAP) is associated with high rate of mortality in intensive care unit (ICU) and has been recognized as a difficult-to-treat infection worldwide. Polymyxin B or colistin-based combination therapies are frequently used worldwide though microbial eradication rate is not promising. Aim: The aim of this study is to compare the clinical outcome of intravenous with aerosolized polymyxin B versus colistin in the treatment of pandrug-resistant K. pneumoniae VAP. Methods: This retrospective cohort study was conducted on 222 mechanically ventilated patients admitted from May 11, 2019 to October 19, 2020. K. pneumoniae isolates were resistant to all available antibiotics, including polymyxins in culture sensitivity tests. As treatment, polymyxin B and colistin was administered in intravenous and aerosolized form concurrently twice daily in 106 patients and 116 patients in PMB and CLN group, respectively for 14 days. Survival rate, safety, and clinical outcomes were compared among the groups. The Cox proportional-hazard model was performed to calculate hazard ratio (HR) with 95% confidence intervals (CI). Results: Patients in PMB group showed more microbial eradication than the patients CLN group [68.1% (n=116)/83% (n=106), respectively; P <0.05). The median day of intubation and ICU stay in PMB group was shorter than that in CLN group [10 (IQR: 9-12.25) vs. 14 (IQR: 11-19), P <0.05; 12 (IQR: 10-14) vs. 15 (IQR: 9-18.5), P=0.072, respectively] with reduced 60-day all-cause mortality rate [15% (n=106) vs. 21.55% (n=116)]. Polymyxin B improved survival compared to colistin (multivariate HR: 0.662; 95% CI=0.359-1.222, P=0.195). Conclusions: Concurrent administration of intravenous and aerosolized polymyxin B in patients with pandrug-resistant K. pneumoniae-associated VAP revealed better microbial eradication, reduced the length of intubation and ICU stay, and improved survival rate compared to colistin.

3.
J Antimicrob Chemother ; 77(11): 3026-3034, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031790

RESUMO

OBJECTIVES: To compare the bacterial killing and emergence of resistance of intermittent versus prolonged (extended and continuous infusions) infusion dosing regimens of piperacillin/tazobactam against two Escherichia coli clinical isolates in a dynamic hollow-fibre infection model (HFIM). METHODS: Three piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion) against a ceftriaxone-susceptible, non-ESBL-producing E. coli 44 (Ec44, MIC 2 mg/L) and six piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion; 4/0.5 g 6 hourly as 0.5 and 3 h infusions and 16/2 g/24 h continuous infusion) were simulated against a ceftriaxone-resistant, AmpC- and ESBL-producing E. coli 50 (Ec50, MIC 8 mg/L) in a HFIM over 7 days (initial inoculum ∼107 cfu/mL). Total and less-susceptible subpopulations and MICs were determined. RESULTS: All simulated dosing regimens against Ec44 exhibited 4 log10 of bacterial killing over 8 h without regrowth and resistance emergence throughout the experiment. For Ec50, there was the initial bacterial killing of 4 log10 followed by regrowth to 1011 cfu/mL within 24 h against all simulated dosing regimens, and the MICs for resistant subpopulations exceeded 256 mg/L at 72 h. CONCLUSIONS: Our study suggests that, for critically ill patients, conventional intermittent infusion, or prolonged infusions of piperacillin/tazobactam may suppress resistant subpopulations of non-ESBL-producing E. coli clinical isolates. However, intermittent, or prolonged infusions may not suppress the resistant subpopulations of AmpC- and ESBL-producing E. coli clinical isolates. More studies are required to confirm these findings.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Piperacilina/farmacologia , Piperacilina/uso terapêutico , Ácido Penicilânico/farmacologia , Ceftriaxona , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação Piperacilina e Tazobactam , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
4.
J Antimicrob Chemother ; 75(9): 2633-2640, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585693

RESUMO

OBJECTIVES: To compare bacterial killing and the emergence of resistance to piperacillin/tazobactam, administered by intermittent versus prolonged infusion (i.e. extended or continuous), for ceftriaxone-resistant Klebsiella pneumoniae clinical isolates in an in vitro dynamic hollow-fibre infection model (HFIM). METHODS: K. pneumoniae 68 (Kp68; MIC = 8 mg/L, producing SHV-106 and DHA-1) and K. pneumoniae 69 (Kp69; MIC = 1 mg/L, producing CTX-M-14) were studied in the HFIM over 7 days (initial inoculum ~107 cfu/mL). Six piperacillin/tazobactam dosing regimens for Kp68 (4/0.5 g 8 hourly as 0.5 and 4 h infusions, 12/1.5 g/24 h continuous infusion, 4/0.5 g 6 hourly as 0.5 and 3 h infusions and 16/2 g/24 h continuous infusion) and three piperacillin/tazobactam dosing regimens for Kp69 (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion) were simulated (piperacillin clearance = 14 L/h, creatinine clearance = 100 mL/min). Total and resistant populations and MICs were quantified/determined. RESULTS: For Kp68, all simulated dosing regimens exhibited approximately 4 log10 of bacterial killing at 8 h followed by regrowth to approximately 1011 cfu/mL within 24 h. The MICs for resistant subpopulations exceeded 256 mg/L at 72 h. Similarly, for Kp69, all simulated dosing regimens exhibited approximately 4 log10 of bacterial killing over 8 h; however, only the continuous infusion prevented bacterial regrowth. CONCLUSIONS: Compared with intermittent infusion, prolonged infusion did not increase initial bacterial killing and suppression of regrowth of plasmid-mediated AmpC- and ESBL-producing K. pneumoniae. However, continuous infusion may suppress regrowth of some ESBL-producing susceptible K. pneumoniae, although more data are warranted to confirm this observation.


Assuntos
Klebsiella pneumoniae , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infusões Intravenosas , Testes de Sensibilidade Microbiana , Ácido Penicilânico , Piperacilina , Combinação Piperacilina e Tazobactam
5.
Clin Pharmacokinet ; 58(11): 1407-1443, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31325141

RESUMO

BACKGROUND: The rates of antibiotic resistance in Gram-negative bacteria are increasing. One method to minimize resistance emergence may be optimization of antibiotic dosing regimens to achieve drug exposure that suppress the emergence of resistance. OBJECTIVE: The aim of this systematic review was to describe the antibiotic exposures associated with suppression of the emergence of resistance for Gram-negative bacteria. METHODS: We conducted a search of four electronic databases. Articles were included if the antibiotic exposure required to suppress the emergence of resistance in a Gram-negative bacterial isolate was described. Among studies, 57 preclinical studies (in vitro and in vivo) and 2 clinical studies 59 included investigated the monotherapy of antibiotics against susceptible and/or intermediate Gram-negative bacteria. RESULTS: The pharmacokinetic/pharmacodynamic (PK/PD) indices reported to suppress the emergence of antibiotic resistance for various classes were ß-lactam antibiotic minimum concentration to minimum inhibitory concentration (Cmin/MIC) ≥ 4; aminoglycoside maximum concentration to MIC (Cmax/MIC) ratio ≥ 20; fluoroquinolones, area under the concentration-time curve from 0 to 24 h to mutant prevention concentration (AUC24/MPC) ≥ 35; tetracyclines, AUC24 to MIC (AUC24/MIC) ratio ≥ 50; polymyxin B, AUC24/MIC ≥ 808; and fosfomycin, AUC24/MIC ≥ 3136. However, the exposures required to suppress the emergence of resistance varied depending on the specific antibiotic tested, the duration of the experiment, the bacterial species and the specific bacterial isolate tested. Importantly, antibiotic exposures required to suppress the emergence of resistance generally exceeded that associated with clinical efficacy. CONCLUSION: The benefits of implementing such high PK/PD targets must be balanced with the potential risks of antibiotic-associated toxicity.


Assuntos
Antibacterianos/farmacocinética , Farmacorresistência Bacteriana , Infecções por Bactérias Gram-Negativas/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos
6.
Appl Biochem Biotechnol ; 185(2): 359-369, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29152694

RESUMO

Bacillus subtilis SC-8 (BSSC8) shows a narrow antimicrobial activity against the Bacillus cereus group. Previously, B. cereus-derived PapR as a signal peptide to stimulate PlcR, which plays a significant role in regulating the transcription of virulence factors, was assumed to stimulate antibiotic production in BSSC8. To better understand the functional role of PapR in the antibiotic production of BSSC8 and the interspecies interaction, the global transcriptomic profiling of BSSC8 was investigated using RNA-Seq in this study. Small peptides derived from B. cereus wild type (WTBC) and a papR-deleted mutant strain (MTBC) were individually supplied to BSSC8 cultures, and changes in global transcription levels were compared by RNA-Seq. In the presence of WTBC small peptides, more genes (80.9%) were significantly upregulated than in cells exposed to MTBC small peptides. Specifically, 48.8 and 83.4% of genes involved in glycolysis and the TCA cycle, respectively, showed changes in transcription levels in response to small peptides from both strains. Of the genes showing the alterations, 35.0% (glycolysis) and 60.0% (TCA cycle) of transcripts were significantly regulated only in response to WTBC-derived small peptides. Furthermore, the expression of biosynthetic genes encoding several known antibiotics in BSSC8 was further decreased in response to WTBC small peptides.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Peptídeos , RNA Bacteriano , Análise de Sequência de RNA , Antibacterianos/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
7.
Drug Deliv ; 23(1): 1-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24758139

RESUMO

There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Microcomputadores , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Nanotecnologia , Preparações Farmacêuticas/administração & dosagem
8.
Adv Pharmacol Sci ; 2015: 257057, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346095

RESUMO

Diarrhea is one of the most common causes for thousands of deaths every year. Therefore, identification of new source of antidiarrheal drugs becomes one of the most prominent focuses in modern research. Our aim was to investigate the antidiarrheal and cytotoxic activities of methanolic extract of Maranta arundinacea linn. (MEMA) leaves in rats and brine shrimp, respectively. Antidiarrheal effect was evaluated by using castor oil-induced diarrhea, enteropooling, and gastrointestinal motility tests at 200 mg/kg and 400 mg/kg body weight in rats where the cytotoxic activity was justified using brine shrimp lethality bioassay at different concentrations of MEMA. The extract showed considerable antidiarrheal effect by inhibiting 42.67% and 57.75% of diarrheal episode at the doses of 200 and 400 mg/kg, respectively. MEMA also significantly (p < 0.01) reduced the castor oil-induced intestinal volume (2.14 ± 0.16 to 1.61 ± 0.12 mL) in enteropooling test as well as intestinal transit (33.00 to 43.36%) in GI motility test, compared to their respective control. These observed effects are comparable to that of standard drug loperamide (5 mg/kg). On the other hand, in brine shrimp lethality test after 24 h, surviving brine shrimp larvae were counted and LD50 was assessed. Result showed that MEMA was potent against brine shrimp with LD50 value of 420 µg/mL. So the highest dose of 400 µg/mL of MEMA was not toxic to mice. So these results indicate that bioactive compounds are present in methanolic extract of Maranta arundinacea leaves including significant antidiarrheal activity and could be accounted for pharmacological effects.

9.
Can J Microbiol ; 61(2): 93-103, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25629960

RESUMO

The rapid onset of resistance reduces the efficacy of most conventional antimicrobial drugs and is a general cause of concern for human well-being. Thus, there is great demand for a continuous supply of novel antibiotics to combat this problem. Bacteria-derived antimicrobial peptides (AMPs) have long been used as food preservatives; moreover, prior to the development of conventional antibiotics, these AMPs served as an efficient source of antibiotics. Recently, peptides produced by members of the genus Bacillus were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Bacillus-derived AMPs can be synthesized both ribosomally and nonribosomally and can be classified according to peptide biosynthesis, structure, and molecular weight. The precise mechanism of action of these AMPs is not yet clear; however, one proposed mechanism is that these AMPs kill bacteria by forming channels in and (or) disrupting the bacterial cell wall. Bacillus-derived AMPs have potential in the pharmaceutical industry, as well as the food and agricultural sectors. Here, we focus on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development. We also provide an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus, including several recently identified novel AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus/química , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Química Farmacêutica , Desenho de Fármacos , Humanos , Lipopeptídeos/química , Peptídeos/química , Ribossomos/química
10.
BMC Complement Altern Med ; 14: 83, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24589067

RESUMO

BACKGROUND: Cyperus rotundus Linn. (Cyperaceae) is used to treat inflammation, pain, fever, wounds, boils and blisters in folk medicine. This study evaluated the antinociceptive effect of the hydromethanol extract of whole plant of C. rotundus (HMCR). METHODS: The antinociceptive activity of HMCR was investigated in thermal-induced (hot plate and tail immersion) and chemical-induced (formalin) nociception models in mice at three different doses (50, 100 and 200 mg/kg; p.o.). Morphine sulphate (5 mg/kg, i.p.) and diclofenac sodium (10 mg/kg, i.p.) were used as reference analgesic agents. RESULTS: In the hot-plate and tail-immersion tests HMCR significantly increased the latency period to the thermal stimuli at all the tested doses (50, 100 and 200 mg/kg) (p < 0.05). The significant increase in latency is clear from the observations at 60 and 90 min. In formalin-induced paw licking test oral administration of HMCR at 100 and 200 mg/kg doses decreased the licking of paw in early phase. All the tested doses (50, 100 and 200 mg/kg) significantly decreased the licking of paw in late phase of the test (p < 0.001). The dose 200 mg/kg was most effective showing maximum percentage of inhibition of licking in both early (61.60%) and late phase (87.41%). CONCLUSION: These results indicate the antinociceptive effect of C. rotundus and suggest that this effect is mediated by both peripheral and central mechanisms. These results support the traditional use of this plant in different painful conditions.


Assuntos
Analgésicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Cyperus/química , Dor Nociceptiva/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Camundongos , Medição da Dor/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA