Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Vis Exp ; (195)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306428

RESUMO

Anxiety is a state of emotion that variably affects animal behaviors, including cognitive functions. Behavioral signs of anxiety are observed across the animal kingdom and can be recognized as either adaptive or maladaptive responses to a wide range of stress modalities. Rodents provide a proven experimental model for translational studies addressing the integrative mechanisms of anxiety at the molecular, cellular, and circuit levels. In particular, the chronic psychosocial stress paradigm elicits maladaptive responses mimicking anxiety-/depressive-like behavioral phenotypes that are analogous between humans and rodents. While previous studies show significant effects of chronic stress on neurotransmitter contents in the brain, the effect of stress on neurotransmitter receptor levels is understudied. In this article, we present an experimental method to quantitate the neuronal surface levels of neurotransmitter receptors in mice under chronic stress, especially focusing on gamma-aminobutyric acid (GABA) receptors, which are implicated in the regulation of emotion and cognition. Using the membrane-impermeable irreversible chemical crosslinker, bissulfosuccinimidyl suberate (BS3), we show that chronic stress significantly downregulates the surface availability of GABAA receptors in the prefrontal cortex. The neuronal surface levels of GABAA receptors are the rate-limiting process for GABA neurotransmission and could, therefore, be used as a molecular marker or a proxy of the degree of anxiety-/depressive-like phenotypes in experimental animal models. This crosslinking approach is applicable to a variety of receptor systems for neurotransmitters or neuromodulators expressed in any brain region and is expected to contribute to a deeper understanding of the mechanisms underlying emotion and cognition.


Assuntos
Encéfalo , Receptores de GABA-A , Humanos , Animais , Camundongos , Membrana Celular , Emoções , Ácido gama-Aminobutírico
2.
Mol Psychiatry ; 27(4): 2304-2314, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35145229

RESUMO

Reduced somatostatin (SST) and dysfunction of SST-positive (SST+) neurons are hallmarks of neurological disorders and associated with mood disturbances, but the molecular origin of SST+ neuron vulnerability is unknown. Using chronic psychosocial stress as a paradigm to induce elevated behavioral emotionality in rodents, we report a selective vulnerability of SST+ neurons through exacerbated unfolded protein response (UPR) of the endoplasmic reticulum (ER), or ER stress, in the prefrontal cortex. We next show that genetically suppressing ER stress in SST+ neurons, but not in pyramidal neurons, normalized behavioral emotionality induced by psychosocial stress. In search for intrinsic factors mediating SST+ neuron vulnerability, we found that the forced expression of the SST precursor protein (preproSST) in SST+ neurons, mimicking psychosocial stress-induced early proteomic changes, induces ER stress, whereas mature SST or processing-incompetent preproSST does not. Biochemical analyses further show that psychosocial stress induces SST protein aggregation under elevated ER stress conditions. These results demonstrate that SST processing in the ER is a SST+ neuron-intrinsic vulnerability factor under conditions of sustained or over-activated UPR, hence negatively impacting SST+ neuron functions. Combined with observations in major medical illness, such as diabetes, where excess ER processing of preproinsulin similarly causes ER stress and ß cell dysfunction, this suggests a universal mechanism for proteinopathy that is induced by excess processing of native endogenous proteins, playing critical pathophysiological roles that extend to neuropsychiatric disorders.


Assuntos
Proteômica , Somatostatina , Estresse do Retículo Endoplasmático , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Somatostatina/metabolismo , Resposta a Proteínas não Dobradas
3.
Mol Psychiatry ; 27(3): 1805-1815, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165396

RESUMO

Sensorimotor information processing underlies normal cognitive and behavioral traits and has classically been evaluated through prepulse inhibition (PPI) of a startle reflex. PPI is a behavioral dimension deregulated in several neurological and psychiatric disorders, yet the mechanisms underlying the cross-diagnostic nature of PPI deficits across these conditions remain to be understood. To identify circuitry mechanisms for PPI, we performed circuitry recording over the prefrontal cortex and striatum, two brain regions previously implicated in PPI, using wild-type (WT) mice compared to Disc1-locus-impairment (LI) mice, a model representing neuropsychiatric conditions. We demonstrated that the corticostriatal projection regulates neurophysiological responses during the PPI testing in WT, whereas these circuitry responses were disrupted in Disc1-LI mice. Because our biochemical analyses revealed attenuated brain-derived neurotrophic factor (Bdnf) transport along the corticostriatal circuit in Disc1-LI mice, we investigated the potential role of Bdnf in this circuitry for regulation of PPI. Virus-mediated delivery of Bdnf into the striatum rescued PPI deficits in Disc1-LI mice. Pharmacologically augmenting Bdnf transport by chronic lithium administration, partly via phosphorylation of Huntingtin (Htt) serine-421 and its integration into the motor machinery, restored striatal Bdnf levels and rescued PPI deficits in Disc1-LI mice. Furthermore, reducing the cortical Bdnf expression negated this rescuing effect of lithium, confirming the key role of Bdnf in lithium-mediated PPI rescuing. Collectively, the data suggest that striatal Bdnf supply, collaboratively regulated by Htt and Disc1 along the corticostriatal circuit, is involved in sensorimotor gating, highlighting the utility of dimensional approach in investigating pathophysiological mechanisms across neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corpo Estriado , Proteínas do Tecido Nervoso , Córtex Pré-Frontal , Inibição Pré-Pulso , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/fisiologia
4.
Mol Psychiatry ; 27(2): 1083-1094, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686766

RESUMO

Major depressive disorder (MDD) is a brain disorder often characterized by recurrent episode and remission phases. The molecular correlates of MDD have been investigated in case-control comparisons, but the biological alterations associated with illness trait (regardless of clinical phase) or current state (symptomatic and remitted phases) remain largely unknown, limiting targeted drug discovery. To characterize MDD trait- and state-dependent changes, in single or recurrent depressive episode or remission, we generated transcriptomic profiles of subgenual anterior cingulate cortex of postmortem subjects in first MDD episode (n = 20), in remission after a single episode (n = 15), in recurrent episode (n = 20), in remission after recurring episodes (n = 15) and control subject (n = 20). We analyzed the data at the gene, biological pathway, and cell-specific molecular levels, investigated putative causal events and therapeutic leads. MDD-trait was associated with genes involved in inflammation, immune activation, and reduced bioenergetics (q < 0.05) whereas MDD-states were associated with altered neuronal structure and reduced neurotransmission (q < 0.05). Cell-level deconvolution of transcriptomic data showed significant change in density of GABAergic interneurons positive for corticotropin-releasing hormone, somatostatin, or vasoactive-intestinal peptide (p < 3 × 10-3). A probabilistic Bayesian-network approach showed causal roles of immune-system-activation (q < 8.67 × 10-3), cytokine-response (q < 4.79 × 10-27) and oxidative-stress (q < 2.05 × 10-3) across MDD-phases. Gene-sets associated with these putative causal changes show inverse associations with the transcriptomic effects of dopaminergic and monoaminergic ligands. The study provides first insights into distinct cellular and molecular pathologies associated with trait- and state-MDD, on plasticity mechanisms linking the two pathologies, and on a method of drug discovery focused on putative disease-causing pathways.


Assuntos
Transtorno Depressivo Maior , Teorema de Bayes , Estudos de Casos e Controles , Depressão/genética , Transtorno Depressivo Maior/tratamento farmacológico , Giro do Cíngulo/metabolismo , Humanos
5.
Neuropsychopharmacology ; 47(2): 553-563, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341497

RESUMO

Reduced brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA) neurotransmission co-occur in brain conditions (depression, schizophrenia and age-related disorders) and are associated with symptomatology. Rodent studies show they are causally linked, suggesting the presence of biological pathways mediating this link. Here we first show that reduced BDNF and GABA also co-occur with attenuated autophagy in human depression. Using mice, we then show that reducing Bdnf levels (Bdnf+/-) leads to upregulated sequestosome-1/p62, a key autophagy-associated adaptor protein, whose levels are inversely correlated with autophagic activity. Reduced Bdnf levels also caused reduced surface presentation of α5 subunit-containing GABAA receptor (α5-GABAAR) in prefrontal cortex (PFC) pyramidal neurons. Reducing p62 gene dosage restored α5-GABAAR surface expression and rescued PFC-relevant behavioral deficits of Bdnf+/- mice, including cognitive inflexibility and reduced sensorimotor gating. Increasing p62 levels was sufficient to recreate the molecular and behavioral profiles of Bdnf+/- mice. Collectively, the data reveal a novel mechanism by which deficient BDNF leads to targeted reduced GABAergic signaling through autophagic dysregulation of p62, potentially underlying cognitive impairment across brain conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ácido gama-Aminobutírico , Animais , Autofagia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição , Camundongos , Receptores de GABA-A , Proteína Sequestossoma-1 , Transmissão Sináptica
6.
Curr Opin Pharmacol ; 60: 133-140, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416525

RESUMO

Neural circuit functions critically depend on homeostatic regulation and quality control of neuronal proteins and organelles. Emerging evidence shows that autophagy, cellular clearance machinery, selectively degrades or controls homeostasis of both pre- and post-synaptic components (e.g. synaptic proteins, organelles, neurotransmitters, and their receptors), thereby regulating synaptic remodeling, neurotransmission, and neuroplasticity. Along with its well-known role in supporting neuronal cell viability and neurodevelopment, autophagy is now implicated in a wide range of neuronal physiology throughout neuronal lifetime, including higher-order brain functions such as information processing, memory encoding, or cognitive functions. Here, we review recent literature on the roles of neuronal autophagy in homeostatic maintenance of synaptic functions and discuss how disruptions in these processes may contribute to the pathophysiology of neurodevelopmental and psychiatric disorders.


Assuntos
Autofagia , Neurônios , Homeostase , Humanos , Plasticidade Neuronal , Transmissão Sináptica
7.
Mol Psychiatry ; 26(8): 3931-3942, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33173197

RESUMO

Major mental illnesses such as schizophrenia (SZ) and bipolar disorder (BP) frequently accompany metabolic conditions, but their relationship is still unclear, in particular at the mechanistic level. We implemented an approach of "from population to neuron", combining population-based epidemiological analysis with neurobiological experiments using cell and animal models based on a hypothesis built from the epidemiological study. We characterized high-quality population data, olfactory neuronal cells biopsied from patients with SZ or BP, and healthy subjects, as well as mice genetically modified for insulin signaling. We accessed the Danish Registry and observed (1) a higher incidence of diabetes in people with SZ or BP and (2) higher incidence of major mental illnesses in people with diabetes in the same large cohort. These epidemiological data suggest the existence of common pathophysiological mediators in both diabetes and major mental illnesses. We hypothesized that molecules associated with insulin resistance might be such common mediators, and then validated the hypothesis by using two independent sets of olfactory neuronal cells biopsied from patients and healthy controls. In the first set, we confirmed an enrichment of insulin signaling-associated molecules among the genes that were significantly different between SZ patients and controls in unbiased expression profiling data. In the second set, olfactory neuronal cells from SZ and BP patients who were not pre-diabetic or diabetic showed reduced IRS2 tyrosine phosphorylation upon insulin stimulation, indicative of insulin resistance. These cells also displayed an upregulation of IRS1 protein phosphorylation at serine-312 at baseline (without insulin stimulation), further supporting the concept of insulin resistance in olfactory neuronal cells from SZ patients. Finally, Irs2 knockout mice showed an aberrant response to amphetamine, which is also observed in some patients with major mental illnesses. The bi-directional relationships between major mental illnesses and diabetes suggest that there may be common pathophysiological mediators associated with insulin resistance underlying these mental and physical conditions.


Assuntos
Transtorno Bipolar , Resistência à Insulina , Esquizofrenia , Animais , Transtorno Bipolar/genética , Humanos , Insulina , Camundongos , Neurônios , Esquizofrenia/genética
8.
Cereb Cortex ; 31(2): 1395-1408, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068001

RESUMO

Aging is associated with reduced brain volume, altered neural activity, and neuronal atrophy in cortical-like structures, comprising the frontal cortex and hippocampus, together contributing to cognitive impairments. Therapeutic efforts aimed at reversing these deficits have focused on excitatory or neurotrophic mechanisms, although recent findings show that reduced dendritic inhibition mediated by α5-subunit containing GABA-A receptors (α5-GABAA-Rs) occurs during aging and contributes to cognitive impairment. Here, we aimed to confirm the beneficial effect on working memory of augmenting α5-GABAA-R activity in old mice and tested its potential at reversing age-related neuronal atrophy. We show that GL-II-73, a novel ligand with positive allosteric modulatory activity at α5-GABAA-R (α5-PAM), increases dendritic branching complexity and spine numbers of cortical neurons in vitro. Using old mice, we confirm that α5-PAM reverses age-related working memory deficits and show that chronic treatment (3 months) significantly reverses age-related dendritic shrinkage and spine loss in frontal cortex and hippocampus. A subsequent 1-week treatment cessation (separate cohort) resulted in loss of efficacy on working memory but maintained morphological neurotrophic effects. Together, the results demonstrate the beneficial effect on working memory and neurotrophic efficacy of augmenting α5-GABAA-R function in old mice, suggesting symptomatic and disease-modifying potential in age-related brain disorders.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Moduladores GABAérgicos/farmacologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Atrofia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Feminino , Moduladores GABAérgicos/química , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Gravidez
9.
J Cereb Blood Flow Metab ; 39(7): 1306-1313, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29430995

RESUMO

Although still a matter of controversy, disrupted in schizophrenia protein 1 (DISC1) was suggested as a potential inhibitor of phosphodiesterase 4 (PDE4). We used Disc1 locus impairment (LI) mice to investigate the interaction between PDE4 and DISC 1 in vivo and in vitro. [11C](R)-Rolipram binding was measured by PET in LI (n = 11) and C57BL/6 wild-type (WT, n = 9) mice. [11C](R)-Rolipram total distribution volumes (VT) were calculated and corrected for plasma-free fraction (fP) measured in a separate group of LI (n = 6) and WT (n = 7) mice. PDE4 enzyme activity was measured using in vitro samples of cerebral cortices from groups of LI (n = 4), heterozygote (n = 4), and WT (n = 4) mice. Disc1 LI mice showed a 41% increase in VT (18 ± 6 vs. 13±4 mL/cm3, P = 0.04) compared to WT mice. VT/fP showed a 73% significant increase (90 ± 31 vs. 52 ± 15 mL/cm3, P = 0.004) in Disc1 LI compared to WT mice. PDE4 enzymatic activity assay confirmed in vivo findings showing significant group differences (p < 0.0001). In conclusion, PDE4 activity was increased in the absence of critical DISC1 protein isoforms both in vivo and in vitro. Additionally, [11C](R)-Rolipram PET was sensitive enough to assess altered PDE4 activity caused by PDE4-DISC1 interaction.


Assuntos
Córtex Cerebral/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Radioisótopos de Carbono , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Deleção de Genes , Haploinsuficiência , Heterozigoto , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Inibidores da Fosfodiesterase 4 , Rolipram/metabolismo
10.
J Invest Dermatol ; 139(5): 1010-1022, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30447238

RESUMO

The skin barrier protects the body from water loss, allergens, and pathogens. Profilaggrin is produced by differentiated keratinocytes and is processed into filaggrin monomers. These monomers cross-link keratin filaments and are also decomposed to natural moisturizing factors in the stratum corneum for skin hydration and barrier function. Deficits in FLG expression impair skin barrier function and underlie skin diseases such as dry skin and atopic dermatitis. However, intrinsic factors that regulate FLG expression and their mechanisms of action remain unknown. Here, we show that lysophosphatidic acid induces FLG expression in human keratinocytes via the LPAR1 and LPAR5 receptors and the downstream RHO-ROCK-SRF pathway. Comprehensive gene profiling analysis further showed that lysophosphatidic acid not only induces FLG expression but also facilitates keratinocyte differentiation. Moreover, lysophosphatidic acid treatment significantly up-regulated FLG production in a three-dimensional culture model of human skin and promoted barrier function in mouse skin in vivo. Thus, our work shows a previously unsuspected role for lysophosphatidic acid and its downstream signaling in the maintenance of skin homeostasis, which may serve as a novel therapeutic target for skin barrier dysfunction.


Assuntos
Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas Filagrinas , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Ácidos Lisofosfatídicos/metabolismo , Absorção Cutânea/genética , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/genética , Regulação para Cima
11.
Sci Adv ; 4(8): eaar6637, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30116778

RESUMO

Individuals with chromosome 22q11.2 deletions are at increased risk of developing psychiatric conditions, most notably, schizophrenia (SZ). Recently, clinical studies have also implicated these recurrent 22q11.2 deletions with the risk of early-onset Parkinson's disease (PD). Thus far, the multiple mouse models generated for 22q11.2 deletions have been studied primarily in the context of congenital cardiac, neurodevelopmental, and psychotic disorders. One of these is the Df1/+ model, in which SZ-associated and developmental abnormalities have been reported. We present the first evidence that the mouse model for the 22q11.2 deletion exhibits motor coordination deficits and molecular signatures (that is, elevated α-synuclein expression) relevant to PD. Reducing the α-synuclein gene dosage in Df1/+ mice ameliorated the motor deficits. Thus, this model of the 22q11.2 deletion shows signatures of both SZ and PD at the molecular and behavioral levels. In addition, both SZ-associated and PD-relevant deficits in the model were ameliorated by treatment with a rapamycin analog, CCI-779. We now posit the utility of 22q11.2 deletion mouse models in investigating the mechanisms of SZ- and PD-associated manifestations that could shed light on possible common pathways of these neuropsychiatric disorders.


Assuntos
Comportamento Animal , Cromossomos Humanos Par 22/genética , Modelos Animais de Doenças , Doença de Parkinson/etiologia , Esquizofrenia/etiologia , Deleção de Sequência , alfa-Sinucleína/genética , Animais , Síndrome de DiGeorge , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Esquizofrenia/patologia
12.
Mol Neuropsychiatry ; 3(4): 223-233, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29888233

RESUMO

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that, while prevalent, has a stagnant track record for advances in treatment. The limited availability of animal models with appropriate face and predictive validities has hampered progress in developing novel neurobiological hypotheses and testing new therapeutic options for this condition. Here, we report that mice deficient in Fez1, a gene specifically expressed in the nervous system with documented functions in neurodevelopment, show hyperactivity and impulsivity phenotypes, which are ameliorated by administering methylphenidate (MPH) or guanfacine (GFC), two pharmacological agents used for ADHD treatment. Fez1-knockout (KO) mice show reduced expression of tyrosine hydroxylase in the midbrain and the brain stem and have reduced levels of dopamine, norepinephrine, or their metabolites in both the nucleus accumbens and the prefrontal cortex. These neurochemical changes in Fez1-KO mice were normalized by MPH or GFC. We propose that Fez1-KO mice can be used as a model to evaluate the role of altered neurodevelopment in the manifestation of ADHD-like behavioral phenotypes, as well as to investigate the neurobiological mechanisms of existing and new pharmacotherapeutic agents for ADHD.

13.
Hum Mol Genet ; 27(18): 3165-3176, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893844

RESUMO

Autophagy plays an essential role in intracellular degradation and maintenance of cellular homeostasis in all cells, including neurons. Although a recent study reported a copy number variation of Ulk2, a gene essential for initiating autophagy, associated with a case of schizophrenia (SZ), it remains to be studied whether Ulk2 dysfunction could underlie the pathophysiology of the disease. Here we show that Ulk2 heterozygous (Ulk2+/-) mice have upregulated expression of sequestosome-1/p62, an autophagy-associated stress response protein, predominantly in pyramidal neurons of the prefrontal cortex (PFC), and exhibit behavioral deficits associated with the PFC functions, including attenuated sensorimotor gating and impaired cognition. Ulk2+/- neurons showed imbalanced excitatory-inhibitory neurotransmission, due in part to selective down-modulation of gamma-aminobutyric acid (GABA)A receptor surface expression in pyramidal neurons. Genetically reducing p62 gene dosage or suppressing p62 protein levels with an autophagy-inducing agent restored the GABAA receptor surface expression and rescued the behavioral deficits in Ulk2+/- mice. Moreover, expressing a short peptide that specifically interferes with the interaction of p62 and GABAA receptor-associated protein, a protein that regulates endocytic trafficking of GABAA receptors, also restored the GABAA receptor surface expression and rescued the behavioral deficits in Ulk2+/- mice. Thus, the current study reveals a novel mechanism linking deregulated autophagy to functional disturbances of the nervous system relevant to SZ, through regulation of GABAA receptor surface presentation in pyramidal neurons.


Assuntos
Autofagia/genética , Proteínas Serina-Treonina Quinases/genética , Esquizofrenia/genética , Proteína Sequestossoma-1/genética , Animais , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Peptídeos/genética , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Transporte Proteico/genética , Células Piramidais/metabolismo , Células Piramidais/patologia , Receptores de GABA-A/genética , Esquizofrenia/fisiopatologia , Transmissão Sináptica/genética
14.
Neurosci Res ; 117: 54-61, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28017600

RESUMO

Alcoholism is a psychiatric condition that develops through neuroadaptations in response to neuronal stresses caused by chronic ethanol intake. Neurons can adapt to ethanol-induced metabolic changes by activating cellular protective mechanisms, including autophagy. Here we show that expression of Ulk1, a gene critical to the regulation of autophagy, was affected in the prefrontal cortex (PFC) of mice following chronic intermittent ethanol (CIE) exposure. Consequently, overall levels of Ulk1 activity in the PFC were downregulated, leading to accumulation of p62, a protein that serves as a target for autophagic degradation. In addition, Ulk1-null mice demonstrated decline in the exploratory activity, deficits in the ability to recognize novel objects following CIE exposure, and reduced rate of voluntary ethanol drinking. The data suggest the neuroprotective role for Ulk1-mediated autophagy in the suppression of neuropsychiatric manifestation during ethanol exposure.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/fisiopatologia , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Regulação para Baixo , Camundongos Transgênicos , Neurônios/metabolismo , Estresse Fisiológico
15.
Mol Cell Biol ; 32(8): 1483-95, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331469

RESUMO

The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.


Assuntos
Neoplasias da Mama/metabolismo , Glândulas Mamárias Animais , Neoplasias Mamárias Animais/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Complexo Mediador/metabolismo , Envelhecimento/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Fator de Transcrição E2F1/metabolismo , Feminino , Fase G1 , Humanos , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Fase S
16.
Mol Cell Biol ; 30(20): 4818-27, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20713445

RESUMO

MED1/TRAP220, a subunit of the transcriptional Mediator/TRAP complex, is crucial for various biological events through its interaction with distinct activators, such as nuclear receptors and GATA family activators. In hematopoiesis, MED1 plays a pivotal role in optimal nuclear receptor-mediated myelomonopoiesis and GATA-1-induced erythropoiesis. In this study, we present evidence that MED1 in stromal cells is involved in supporting hematopoietic stem and/or progenitor cells (HSPCs) through osteopontin (OPN) expression. We found that the proliferation of bone marrow (BM) cells cocultured with MED1 knockout (Med1(-/-)) mouse embryonic fibroblasts (MEFs) was significantly suppressed compared to the control. Furthermore, the number of long-term culture-initiating cells (LTC-ICs) was attenuated for BM cells cocultured with Med1(-/-) MEFs. The vitamin D receptor (VDR)- and Runx2-mediated expression of OPN, as well as Mediator recruitment to the Opn promoter, was specifically attenuated in the Med1(-/-) MEFs. Addition of OPN to these MEFs restored the growth of cocultured BM cells and the number of LTC-ICs, both of which were attenuated by the addition of the anti-OPN antibody to Med1(+/+) MEFs and to BM stromal cells. Consequently, MED1 in niche appears to play an important role in supporting HSPCs by upregulating VDR- and Runx2-mediated transcription on the Opn promoter.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Células Estromais/metabolismo , Animais , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Subunidade 1 do Complexo Mediador/deficiência , Camundongos , Camundongos Knockout , Osteopontina/deficiência , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Células Estromais/citologia , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA