RESUMO
Treatment with CD19-targeted chimeric antigen receptor T cell therapy (CD19-CART) has improved salvage rates in children and adults with relapsed and/or refractory B-cell acute lymphoblastic leukemia (ALL). However, not all patients treated with CD19-CAR T cells achieve long-term remission. The role of allogeneic hematopoietic stem cell transplantation as consolidative therapy remains undefined. We aim to review the current literature published to date regarding prognostic markers indicating durable ALL response to CD19-CART and risk factors for relapse after CD19-CART to identify patient cohorts who may benefit from consolidative hematopoietic stem cell transplantation.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Transplante Homólogo/métodos , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD19/imunologiaRESUMO
Infants with B-cell acute lymphoblastic leukemia (B-ALL) continue to have significantly worse outcomes compared to older children with B-ALL, and those with relapsed or refractory (R/R) infant ALL have especially dismal outcomes with conventional treatment. CD19-targeting chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable success in the treatment of R/R childhood B-ALL, though the majority of reports have been in non-infant patients. Barriers to the successful implementation of CAR T-cell therapy in infant B-ALL include challenges related to apheresis, product manufacturing and disease-specific considerations such as lineage switch. We describe our experience utilizing two experimental CD19-CAR T-cell products, SCRI-CAR19 or SCRI-CAR19x22, for 19 patients with R/R infant B-ALL enrolled on three clinical trials. CAR T-cell products were successfully manufactured in 18/19 (94.7%) patients, with a median age of 22.5 months at enrollment (range, 14.5-40.1 months). Sixteen of 17 (94.1%) treated patients achieved a complete remission without detectable minimal residual disease. The 1-year leukemia free survival was 75% and 1-year overall survival was 76.5%, with a median follow up time of 35.8 months (range, 1.7-83.6 months). Cytokine release syndrome (CRS) occurred in 14/17 (82.4%) patients, with only 1 patient experiencing Grade 3 CRS. Neurotoxicity occurred in 2/17 (11.8%) patients with all events ≤ Grade 2. With the successful early clinical experience of CAR T-cell therapy in this population, more systematic evaluation specific to infant ALL is warranted.
RESUMO
Since 2005 there has been steady decline in chronic graft-versus-host disease (cGVHD) at Fred Hutchinson Cancer Center (FHCC). To better understand this phenomenon, we studied the risk of cGVHD requiring systemic immunosuppression (cGVHD-IS) as a function of hematopoietic cell transplantation (HCT)-date in 3066 survivors from 2005 through 2019. Cox regression models were fit to assess associations of HCT-date (as a continuous linear variable) with cause-specific hazards of cGVHD, using unadjusted and adjusted models. Median follow-up for study subjects was 7.0 years (range, 1.0-17.2). Two-year probabilities of cGVHD-IS declined among all survivors from 45-52% (2005-2007) to approximately 40% (2008-2012) and then further to ~26% by 2017. A decline was also observed when the analysis was restricted to 502 pediatric survivors, with cGVHD-IS probabilities being <10% since 2013. Among 305 adult and pediatric survivors who were transplanted for nonmalignant diseases, cGVHD rates showed greater fluctuation but remained <20% after 2016. Each 5-year increase in HCT-date was associated with a 27% decrease in the cause-specific hazard of cGVHD (unadjusted hazard ratio [HR] 0.73; 95% confidence interval [CI] 0.68-0.78, p<.0001); the HR was 0.81 (95% CI 0.75-0.87, p<.0001) even after adjusting for various factors (age, donor/stem-cell source, race, sex, conditioning intensity, GVHD prophylaxis, among others) that could lead to cGVHD reduction. The decline in cGVHD was not fully explained by demographic shifts and greater use of HCT approaches generally associated with lower cGVHD rates. This observation underscores that single-cohort cGVHD-prevention studies should use contemporaneous and not historical controls for comparisons.
RESUMO
With advancements in novel therapeutics, it is unclear whether third hematopoietic cell transplantation (HCT3) has a place in the treatment of recurrent hematopoietic malignancies. We evaluated patients with hematologic malignancies who underwent HCT3 between 2000-2020. Nine patients, with a median age of 18 (9-68) years at HCT3 with acute myelogenous leukemia (n = 5), acute lymphoblastic leukemia (n = 2), myelodysplastic syndrome (n = 1), or undifferentiated acute leukemia (n = 1), were identified. The median time between first HCT and HCT3 was 3.9 (0.7-13.6) years. Indication for HCT3 was relapse (n = 8) or graft failure (n = 1) after second HCT. At HCT3, seven of nine patients were in complete remission by flow cytometry. All experienced robust donor engraftment by one month after HCT3 (≥ 90% CD3) while one died at day + 24 of multi-organ failure and was not evaluable for chimerism. In total, eight patients died from relapse (n = 4), non-relapse, (n = 3) or unknown (n = 1) causes at a median of 0.6 (range, 0.1 - 9.9) years after HCT3. After HCT3, estimated overall survival at 6 months, 1 year, and 5 years was 88%, 63%, and 22%, respectively. In this highly selected group, HCT3 provided a treatment option although long-term survival was still dismal.
Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Humanos , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Adolescente , Idoso , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/mortalidade , Criança , Adulto Jovem , Resultado do Tratamento , Taxa de Sobrevida , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidade , Estudos RetrospectivosRESUMO
ABSTRACT: Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Receptores de Antígenos de Linfócitos T , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Leucemia/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Recidiva , Idoso , Receptores de Antígenos Quiméricos/imunologia , OligopeptídeosRESUMO
Although CD19-directed chimeric antigen receptor (CAR) T cell therapy (CAR-T) for relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL) has been transformative in inducing and sustaining remission, relapse rates remain unacceptably high, with approximately 50% of children and young adults experiencing relapse within the first year postinfusion. Emerging strategies to extend the durability of remission involve the use of prognostic biomarkers to identify those at high risk of relapse or incorporate strategies aimed to enhancing functional CAR T cell persistence. Nonetheless, with antigen loss/down-regulation or evolution to lineage switch as major mechanisms of relapse, optimizing single antigen targeting alone is insufficient. Here, with a focus on relapse prevention strategies, including postinfusion surveillance and treatment approaches being explored to optimize post-CAR-T management (eg, combinatorial antigen targeting strategies, preemptive hematopoietic cell transplantation), we review the current state of the art in the prevention and management of post CAR-T relapse. We highlight the advancements in the field and identify gaps in the literature to guide future research in optimizing the prevention and management of post-CAR-T relapse in children and young adults with B-ALL.
Assuntos
Linfoma de Burkitt , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Adulto Jovem , Humanos , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Doença CrônicaRESUMO
Background: Pre-clinical development and in-human trials of 'off-the-shelf' immune effector cell therapy (IECT) are burgeoning. IECT offers many potential advantages over autologous products. The relevant HLA matching criteria vary from product to product and depend on the strategies employed to reduce the risk of GvHD or to improve allo-IEC persistence, as warranted by different clinical indications, disease kinetics, on-target/off-tumor effects, and therapeutic cell type (T cell subtype, NK, etc.). Objective: The optimal choice of candidate donors to maximize target patient population coverage and minimize cost and redundant effort in creating off-the-shelf IECT product banks is still an open problem. We propose here a solution to this problem, and test whether it would be more expensive to recruit additional donors or to prevent class I or class II HLA expression through gene editing. Study design: We developed an optimal coverage problem, combined with a graph-based algorithm to solve the donor selection problem under different, clinically plausible scenarios (having different HLA matching priorities). We then compared the efficiency of different optimization algorithms - a greedy solution, a linear programming (LP) solution, and integer linear programming (ILP) -- as well as random donor selection (average of 5 random trials) to show that an optimization can be performed at the entire population level. Results: The average additional population coverage per donor decrease with the number of donors, and varies with the scenario. The Greedy, LP and ILP algorithms consistently achieve the optimal coverage with far fewer donors than the random choice. In all cases, the number of randomly-selected donors required to achieve a desired coverage increases with increasing population. However, when optimal donors are selected, the number of donors required may counter-intuitively decrease with increasing population size. When comparing recruiting more donors vs gene editing, the latter was generally more expensive. When choosing donors and patients from different populations, the number of random donors required drastically increases, while the number of optimal donors does not change. Random donors fail to cover populations different from their original populations, while a small number of optimal donors from one population can cover a different population. Discussion: Graph-based coverage optimization algorithms can flexibly handle various HLA matching criteria and accommodate additional information such as KIR genotype, when such information becomes routinely available. These algorithms offer a more efficient way to develop off-the-shelf IECT product banks compared to random donor selection and offer some possibility of improved transparency and standardization in product design.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Doadores de TecidosRESUMO
T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 can induce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). The durability of remission is related to the length of time the CAR T cells persist. Efforts to understand differences in persistence have focused on the CAR construct, in particular the costimulatory signaling module of the chimeric receptor. We previously reported a robust intent-to-treat product manufacturing success rate and remission induction rate in children and young adults with recurrent/refractory B-ALL using the SCRI-CAR19v1 product, a second-generation CD19-specific CAR with 4-1BB costimulation coexpressed with the EGFRt cell-surface tag (NCT02028455). Following completion of the phase I study, two changes to CAR T-cell manufacturing were introduced: switching the T-cell activation reagent and omitting midculture EGFRt immunomagnetic selection. We tested the modified manufacturing process and resulting product, designated SCRI-CAR19v2, in a cohort of 21 subjects on the phase II arm of the trial. Here, we describe the unanticipated enhancement in product performance resulting in prolonged persistence and B-cell aplasia and improved leukemia-free survival with SCRI-CAR19v2 as compared with SCRI-CAR19v1.
Assuntos
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19 , Criança , Ensaios Clínicos Fase I como Assunto , Humanos , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Recidiva , Linfócitos T , Adulto JovemRESUMO
Acute gastrointestinal graft-versus-host disease (GI GVHD) is a complication after hematopoietic stem cell transplant with high morbidity and mortality. In particular, steroid-refractory GI GVHD can be difficult to treat. Recent investigations have revealed that patients after transplant can experience intestinal dysbiosis contributing to the progression of GVHD. Modulation of the gut microbiome through dietary intake could potentially improve the intestinal dysbiosis in GI GVHD. In this case series, we present 3 patients where dietary therapy was used in conjunction with immunosuppression to achieve clinical remission of GI GVHD.
RESUMO
Consolidative hematopoietic cell transplantation (HCT) after CD19 chimeric antigen receptor (CAR) T cell therapy is frequently performed for patients with refractory/ relapsed B cell acute lymphoblastic leukemia (B-ALL). However, there is controversy regarding the role of HCT following remission attainment. We evaluated the effect of consolidative HCT on leukemia-free survival (LFS) in pediatric and young adult subjects following CD19 CAR T cell induced remission. We evaluated the effect of consolidative HCT on LFS in pediatric and young adult subjects treated with a 41BB-CD19 CAR T cell product on a phase 1/2 trial, Pediatric and Young Adult Leukemia Adoptive Therapy (PLAT)-02 (ClinicalTrials.gov identifier NCT02028455), using a time-dependent Cox proportional hazards statistical model. Fifty of 64 subjects enrolled in PLAT-02 phase 1 and early phase 2 were evaluated, excluding 14 subjects who did not achieve remission, relapsed, or died before day 63 post-CAR T cell therapy. An improved LFS (P = .01) was observed in subjects who underwent consolidative HCT after CAR T cell therapy versus watchful waiting. Consolidative HCT improved LFS specifically in subjects who had no prior history of HCT, with a trend toward significance (P = .09). This benefit was not evident when restricted to the cohort of 34 subjects with a history of prior HCT (P = .45). However, for subjects who had CAR T cell functional persistence of 63 days or less, inclusive of those with a history of prior HCT, HCT significantly improved LFS outcomes (P = .01). These data support the use of consolidative HCT following CD19 CAR T cell-induced remission for patients with no prior history of HCT and those with short functional CAR T cell persistence.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Antígenos CD19 , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos TRESUMO
We report a 6 month-old infant girl with t(1;11)(p32;q23), KMT2A/EPS15-rearranged B-acute lymphoblastic leukemia (B-ALL) that was refractory to traditional ALL-directed chemotherapy. Following administration of blinatumomab, she experienced lineage switch from B-ALL to acute myeloid leukemia (AML). Myeloid-directed chemotherapy resulted in clearance of AML by flow cytometry, though a residual CD19+ B-ALL population persisted (0.14%). Following bridging blinatumomab, the patient achieved B-ALL and AML remission, as measured by flow cytometry. The patient subsequently underwent allogeneic hematopoietic stem cell transplant. Unfortunately, she relapsed with CD19+ B-ALL one-month post-transplantation. Next generation sequencing study of IGH/IGL using ClonoSEQ® analysis detected 3 dominant sequences all present in her original B-ALL, lineage switched AML, and post-transplant relapsed B-ALL, though the latter showed an additional 4 sequences, three of which were present at low abundance in the original diagnostic sample. The presence of the same clones throughout her disease course suggests cellular reprogramming and differentiation following chemotherapy and immunotherapy. This is the first reported case of lineage switch of B-ALL with t(1;11) and also the first report of a lineage switch case that used ClonoSEQ® to define the clonality of the original B-ALL, lineage switched AML, and relapsed B-ALL.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Feminino , Fusão Gênica , Rearranjo Gênico , Humanos , Lactente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genéticaRESUMO
Although the use of treosulfan (TREO) in conventional donor hematopoietic cell transplantation (HCT) has been extensively evaluated, its use in cord blood transplantation (CBT) for hematologic malignancies has not been reported. Between March 2009 and October 2019, 130 CBT recipients were enrolled in this prospective multicenter phase 2 study. The conditioning regimen consisted of TREO, fludarabine, and a single fraction of 2 Gy total-body irradiation. Cyclosporine and mycophenolate mofetil were used for graft-versus-host disease prophylaxis. The primary end point was incidence of graft failure (GF), and based on risk of GF, patients were classified as low risk (arm 1, n = 66) and high risk (arm 2, n = 64). The median age was 45 years (range, 0.6-65 years). Disease status included acute leukemias in first complete remission (CR; n = 56), in ≥2 CRs (n = 46), and myelodysplastic (n = 25) and myeloproliferative syndromes (n = 3). Thirty-five patients (27%) had received a prior HCT. One hundred twenty-three patients (95%) engrafted, with neutrophil recovery occurring at a median of 19 days for patients on arm 1 and 20 days for patients on arm 2. The 3-year overall survival, relapse-free survival (RFS), transplant-related mortality, and relapse for the combined groups were 66%, 57%, 18%, and 24%, respectively. Among patients who had a prior HCT, RFS at 3 years was 48%. No significant differences in clinical outcomes were seen between the 2 arms. Our results demonstrate that TREO-based conditioning for CBT recipients is safe and effective in promoting CB engraftment with favorable clinical outcomes. This trial was registered at www.clinicaltrials.gov as #NCT00796068.
Assuntos
Doença Enxerto-Hospedeiro , Bussulfano/análogos & derivados , Bussulfano/uso terapêutico , Sangue Fetal , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.
RESUMO
Chimeric antigen receptor (CAR) T-cell therapy has transformed the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (ALL). However, this new paradigm has introduced unique considerations specific to the patients receiving CAR T-cell therapy, including prognostic uncertainty, symptom management, and psychosocial support. With increasing availability, there is a growing need for evidence-based recommendations that address the specific psychosocial needs of the children who receive CAR T-cell therapy and their families. To guide and standardize the psychosocial care offered for patients receiving CAR T-cell therapy, we propose the following recommendations for addressing psychosocial support.
Assuntos
Imunoterapia Adotiva/psicologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/psicologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos Quiméricos , Criança , HumanosRESUMO
Immunotherapy with the adoptive transfer of T cells redirected with CD19-specific chimeric antigen receptors (CARs) for B-lineage acute lymphoblastic leukemia (ALL) can salvage >80% of patients having relapsed/refractory disease. The therapeutic index of this emerging modality is attenuated by the occurrence of immunologic toxicity syndromes that occur upon CAR T-cell engraftment. Here, we report on the low incidence of severe cytokine release syndrome (CRS) in a subject treated with a CAR T-cell product composed of a defined ratio CD4:CD8 T-cell composition with a 4-1BB:zeta CAR targeting CD19 who also recieved early intervention treatment. We report that early intervention with tocilizumab and/or corticosteroids may reduce the frequency at which subjects transition from mild CRS to severe CRS. Although early intervention doubled the numbers of subjects dosed with tocilizumab and/or corticosteroids, there was no apparent detrimental effect on minimal residual disease-negative complete remission rates or subsequent persistence of functional CAR T cells compared with subjects who did not receive intervention. Moreover, early intervention therapy did not increase the proportion of subjects who experience neurotoxicity or place subjects at risk for infectious sequelae. These data support the contention that early intervention with tocilizumab and/or corticosteroids in subjects with early signs of CRS is without negative impact on the antitumor potency of CD19 CAR T cells. This intervention serves to enhance the therapeutic index in relapsed/refractory patients and provides the rationale to apply CAR T-cell therapy more broadly in ALL therapy. This trial was registered at www.clinicaltrials.gov as #NCT020284.
Assuntos
Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Síndrome da Liberação de Citocina/etiologia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Adolescente , Corticosteroides/administração & dosagem , Corticosteroides/farmacologia , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Criança , Pré-Escolar , Síndrome da Liberação de Citocina/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Incidência , Lactente , Masculino , Gradação de Tumores , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Adulto JovemRESUMO
We studied 232 consecutive children transplanted between 1990 and 2011 with relapse after first hematopoietic cell transplant (HCT). Kaplan-Meier survival and hazard ratios for mortality were calculated for factors known at time of relapse using Cox proportional hazards models. The median (range) age at time of first HCT was 10.9 (0.5-20.9) years, time to relapse was 6.1 (0.2-89.5) months after HCT, and age at relapse was 11.7 (0.7-23.6) years. The 3-year overall survival (OS) after relapse was 13% (95% confidence interval (CI): 9%, 18%).The median (range) follow-up for the 18 surviving patients was 7.2 (3.0-24.4) years after relapse. The remaining 214 died after a median of 3 months (0.02-190.4). OS was not significantly different for patients with ALL as compared to AML. Fifty-one patients proceeded to second transplant of whom nine survive. Factors associated with improved survival included late relapse (>12 months), ALL in first CR at the time of first transplant and chemotherapy-based first conditioning regimens. These results can be used to counsel patients at the time of relapse after first transplant and as a baseline for comparison as to the effectiveness of newer therapies which are greatly needed for treatment of post-transplant relapse.
Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Condicionamento Pré-Transplante/métodos , Criança , Feminino , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Prognóstico , Recidiva , Análise de SobrevidaRESUMO
Lactic acidosis in the emergency department and other hospital settings is typically due to tissue hypoxia with sepsis being the most common cause. However, in patients with persistently elevated lactate without evidence of inadequate oxygen delivery, type B lactic acidosis should be considered. We report the case of a 12-year-old boy with relapsed and refractory pre-B-cell acute lymphoblastic leukemia who presented in distress with tachycardia, history of fever, and diffuse abdominal tenderness. The patient had severe metabolic acidosis with elevated lactate upon arrival to the emergency department. Despite aggressive fluid resuscitation and intravenous antibiotics, the patient's acidosis worsened. Serial blood cultures were negative, and he was eventually diagnosed with type B lactic acidosis secondary to relapsed acute lymphoblastic leukemia.
Assuntos
Acidose Láctica/etiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Acidose Láctica/terapia , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Criança , Estado Terminal/terapia , Diagnóstico Diferencial , Evolução Fatal , Humanos , Ácido Láctico/sangue , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Sepse/diagnóstico , Tomografia Computadorizada por Raios XRESUMO
Several CAR T designs with CD19 specificity have been associated with consistent responses in clinical trials with complete remission (CR) rates ranging from 70-90%. Relevant challenges remain to be addressed, such as production time, early loss of CAR T cells, relapse due to loss of the target antigen, and prevention of severe cytokine release syndrome and neurotoxicity. This review describes constructs, clinical trial results, side effects, and future direction of CAR T-cell therapy in B-ALL.