RESUMO
The recognition of DNA Binding Proteins (DBPs) plays a crucial role in understanding biological functions such as replication, transcription, and repair. Although current sequence-based methods have shown some effectiveness, they often fail to fully utilize the potential of deep learning in capturing complex patterns. This study introduces a novel model, LGC-DBP, which integrates Long Short-Term Memory (LSTM), Gated Inception Convolution, and Improved Channel Attention mechanisms to enhance the prediction of DBPs. Initially, the model transforms protein sequences into Position Specific Scoring Matrices (PSSM), then processed through our deep learning framework. Within this framework, Gated Inception Convolution merges the concepts of gating units with the advantages of Graph Convolutional Network (GCN) and Dilated Convolution, significantly surpassing traditional convolution methods. The Improved Channel Attention mechanism substantially enhances the model's responsiveness and accuracy by shifting from a single input to three inputs and integrating three sigmoid functions along with an additional layer output. These innovative combinations have significantly improved model performance, enabling LGC-DBP to recognize and interpret the complex relationships within DBP features more accurately. The evaluation results show that LGC-DBP achieves an accuracy of 88.26% and a Matthews correlation coefficient of 0.701, both surpassing existing methods. These achievements demonstrate the model's strong capability in integrating and analyzing multi-dimensional data and mark a significant advancement over traditional methods by capturing deeper, nonlinear interactions within the data.
RESUMO
DNA-binding proteins are a class of proteins that can interact with DNA molecules through physical and chemical interactions. Their main functions include regulating gene expression, maintaining chromosome structure and stability, and more. DNA-binding proteins play a crucial role in cellular and molecular biology, as they are essential for maintaining normal cellular physiological functions and adapting to environmental changes. The prediction of DNA-binding proteins has been a hot topic in the field of bioinformatics. The key to accurately classifying DNA-binding proteins is to find suitable feature sources and explore the information they contain. Although there are already many models for predicting DNA-binding proteins, there is still room for improvement in mining feature source information and calculation methods. In this study, we created a model called DBPboost to better identify DNA-binding proteins. The innovation of this study lies in the use of eight feature extraction methods, the improvement of the feature selection step, which involves selecting some features first and then performing feature selection again after feature fusion, and the optimization of the differential evolution algorithm in feature fusion, which improves the performance of feature fusion. The experimental results show that the prediction accuracy of the model on the UniSwiss dataset is 89.32%, and the sensitivity is 89.01%, which is better than most existing models.