Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Phys Chem Chem Phys ; 26(26): 18321-18332, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912536

RESUMO

The biphenyl molecule (C12H10) acts as a fundamental molecular backbone in the stereoselective synthesis of organic materials due to its inherent twist angle causing atropisomerism in substituted derivatives and in molecular mass growth processes in circumstellar environments and combustion systems. Here, we reveal an unconventional low-temperature phenylethynyl addition-cyclization-aromatization mechanism for the gas-phase preparation of biphenyl (C12H10) along with ortho-, meta-, and para-substituted methylbiphenyl (C13H12) derivatives through crossed molecular beams and computational studies providing compelling evidence on their formation via bimolecular gas-phase reactions of phenylethynyl radicals (C6H5CC, X2A1) with 1,3-butadiene-d6 (C4D6), isoprene (CH2C(CH3)CHCH2), and 1,3-pentadiene (CH2CHCHCHCH3). The dynamics involve de-facto barrierless phenylethynyl radical additions via submerged barriers followed by facile cyclization and hydrogen shift prior to hydrogen atom emission and aromatization to racemic mixtures (ortho, meta) of biphenyls in overall exoergic reactions. These findings not only challenge our current perception of biphenyls as high temperature markers in combustion systems and astrophysical environments, but also identify biphenyls as fundamental building blocks of complex polycyclic aromatic hydrocarbons (PAHs) such as coronene (C24H12) eventually leading to carbonaceous nanoparticles (soot, grains) in combustion systems and in deep space thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

2.
Plant J ; 119(1): 432-444, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38635415

RESUMO

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Assuntos
Hordeum , Doenças das Plantas , Proteínas de Plantas , Tiamina , Hordeum/virologia , Hordeum/genética , Hordeum/metabolismo , Tiamina/metabolismo , Tiamina/biossíntese , Doenças das Plantas/virologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Luteovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Virais/metabolismo , Proteínas Virais/genética , Cloroplastos/metabolismo , Ácido Salicílico/metabolismo , Interações Hospedeiro-Patógeno , Resistência à Doença/genética
4.
Chem Commun (Camb) ; 60(11): 1404-1407, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174640

RESUMO

A high temperature phenyl-mediated addition-cyclization-dehydrogenation mechanism to form peri-fused polycyclic aromatic hydrocarbon (PAH) derivatives-illustrated through the formation of dibenzo[e,l]pyrene (C24H14)-is explored through a gas-phase reaction of the phenyl radical (C6H5˙) with triphenylene (C18H12) utilizing photoelectron photoion coincidence spectroscopy (PEPICO) combined with electronic structure calculations. Low-lying vibrational modes of dibenzo[e,l]pyrene exhibit out-of-plane bending and are easily populated in high temperature environments such as combustion flames and circumstellar envelopes of carbon stars, thus stressing dibenzo[e,l]pyrene as a strong target for far-IR astronomical surveys.

5.
Plant Commun ; 5(1): 100659, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434356

RESUMO

Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Vírus de RNA de Cadeia Positiva , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Vírus de RNA de Cadeia Positiva/metabolismo , Ácidos Fosfatídicos , Sistema de Sinalização das MAP Quinases , Fosforilação
6.
Nat Commun ; 14(1): 7773, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012219

RESUMO

Wheat yellow mosaic virus (WYMV), a soil-borne pathogen, poses a serious threat to global wheat production. Here, we identify a WYMV resistance gene, TaRD21A, that belongs to the papain-like cysteine protease family. Through genetic manipulation of TaRD21A expression, we establish its positive role in the regulation of wheat to WYMV resistance. Furthermore, our investigation shows that the TaRD21A-mediated plant antiviral response relies on the release of a small peptide catalyzed by TaRD21A protease activity. To counteract wheat resistance, WYMV-encoded nuclear inclusion protease-a (NIa) suppress TaRD21A activity to promote virus infection. In resistant cultivars, a natural variant of TaRD21A features a glycine-to-threonine substitution and this substitution enables the phosphorylation of threonine, thereby weakening the interaction between NIa and TaRD21A, reinforcing wheat resistance against WYMV. Our study not only unveils a WYMV resistance gene but also offers insights into the intricate mechanisms underpinning resistance against WYMV.


Assuntos
Vírus do Mosaico , Potyviridae , Triticum/genética , Papaína , Sinais Direcionadores de Proteínas , Potyviridae/genética , Vírus do Mosaico/genética , Treonina , Doenças das Plantas/genética
7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37628763

RESUMO

Plant viruses are tiny pathogenic obligate parasites that cause significant damage to global crop production. They exploit and manipulate the cellular components of host plants to ensure their own survival. In response, plants activate multiple defense signaling pathways, such as gene silencing and plant hormone signaling, to hinder virus propagation. Growing evidence suggests that the regulation of protein homeostasis plays a vital role in the ongoing battle between plants and viruses. The ubiquitin-proteasome-degradation system (UPS) and autophagy, as two major protein-degradation pathways, are widely utilized by plants and viruses in their arms race. One the one hand, these pathways act as essential components of plant's antiviral defense system by facilitating the degradation of viral proteins; on the other hand, viruses exploit the UPS and autophagy to create a favorable intracellular environment for viral infection. This review aims to provide a comprehensive summary of the events involved in protein homeostasis regulation during viral infection in plants. Gaining knowledge in this area will enhance our understanding of the complex interplay between plants and viruses.


Assuntos
Proteostase , Vírus , Antivirais , Vírion , Autofagia
8.
Small ; 19(22): e2206943, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36755211

RESUMO

Developing a facile, efficient, and versatile polyphenol coating strategy and exploring its novel applications are of great significance in the fields of material surfaces and interfaces. Herein, a one-step assembly strategy for constructing novel tannic acid (TA) coatings via a solvent evaporation method is reported using TA and polycyclodextrin (PCD) particles (TPP). TPP with a high phenolic group activity of 88% integrates the advantages of host-guest and polyphenol chemistry. The former can drive TPP dynamically assemble into a large and collective aggregation activated by high temperature or density, and the latter provides excellent adhesion properties to substrates (0.9 mg cm-2 ). TPP can assemble into a coating (TPC) rapidly on various substrates within 1 h at 37 °C while with a high availability of feed TPP (≈90%). The resulting TPC is not only high-temperature steam-sensitive for use as an anti-fake mask but also pH-sensitive for transforming into a free-standing film under physiological conditions. Moreover, various metal ions and functional particles can incorporate into TPC to extend its versatile properties including antibacterial activity, enhanced stability, and conductivity. This work expands the polyphenol coating strategy and builds up a one-step and efficient preparation platform of polyphenol coating for multiapplication prospects in various fields.

9.
J Phys Chem A ; 127(8): 1901-1908, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36790335

RESUMO

The bimolecular gas-phase reaction of ground-state atomic carbon (C(3Pj)) with disilane (Si2H6, X1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 36.6 ± 4.5 kJ mol-1. Two channels were observed: a molecular hydrogen elimination plus Si2CH4 (reaction 1) pathway and a silane loss channel along with the formation of SiCH2 (reaction 2), with branching ratios of 20 ± 3 and 80 ± 4%, respectively. Both channels involved indirect scattering dynamics via long-lived Si2CH6 reaction intermediate(s); the latter eject molecular hydrogen and silane in "molecular" elimination channels within the rotational plane of the fragmenting intermediate nearly perpendicularly to the total angular momentum vector. These molecular elimination channels are associated with tight exit transition states as reflected in a significant electron rearrangement as visible from the chemical bonding in the light reaction products molecular hydrogen and silane. Once these hydrogenated silicon-carbide clusters are formed within the inner envelope of carbon stars such as of IRC + 10216, the stellar wind can drive both Si2CH4 and SiCH2 to the outside sections of the envelope, where they can be photolyzed. This is of particular importance to unravel potential formation pathways to disilicon monocarbide (Si2C) observed recently in the circumstellar shell of IRC + 10216.

10.
J Phys Chem Lett ; 14(2): 430-436, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36622768

RESUMO

1-Germavinylidene (H2CGe; X1A1), the germanium analogue of vinylidene (H2CC; X1A1), was prepared via a directed gas-phase synthesis through the bimolecular reaction of ground state atomic carbon (C; 3P) with germane (GeH4; X1A1) under single-collision conditions. The reaction commences with the barrierless insertion of carbon into the Ge-H bond followed by intersystem crossing from the triplet to singlet surface and migration of atomic hydrogen to germylene (H2GeCH2), which predominantly decomposes via molecular hydrogen loss to 1-germavinylidene (H2CGe; X1A1). Therefore, the replacement of a single carbon atom in the acetylene-vinylidene system by germanium critically impacts the chemical bonding, molecular structure, and thermodynamic stability of the carbene-type structures favoring 1-germavinylidene (H2CGe) over germyne (HGeCH) by 160 kJ mol-1. Hence, the carbon-germane system represents a benchmark in the exploration of the chemistries of main group 14 elements with germanium-bearing systems showing few similarities with the isovalent carbon system.

11.
Theor Appl Genet ; 136(1): 3, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36651948

RESUMO

KEY MESSAGE: The QYm.nau-2D locus conferring wheat yellow mosaic virus resistance is an exotic introgression and we developed 11 diagnostic markers tightly linked to QYm.nau-2D. Wheat yellow mosaic virus (WYMV) is a serious disease of winter wheat in China. Breeding resistant varieties is the most effective strategy for WYMV control. A WYMV resistant locus QYm.nau-2D on the chromosome arm 2DL has been repeatedly reported but the mapped region is large. In the present study, we screened recombinants using a biparental population and mapped QYm.nau-2D into an 18.8 Mb physical interval. By genome-wide association studies of 372 wheat varieties for WYMV resistance in four environments, we narrowed down QYm.nau-2D into a 16.4 Mb interval. Haplotype analysis indicated QYm.nau-2D were present as six different states due to recombination during hybridization breeding. QYm.nau-2D was finally mapped into a linkage block of 11.2 Mb. Chromosome painting using 2D specific probes and collinearity analysis among the published sequences corresponding to QYm.nau-2D region indicated the block was an exotic introgression. The Illumina-sequenced reads of four diploid Aegilops species were mapped to the sequence of Fielder, a variety having the introgression. The mapping reads were significantly increased at the putative introgression regions of Fielder. Ae. uniaristata (NN) had the highest mapping reads, suggesting that QYm.nau-2D was possibly an introgression from genome N. We investigated the agronomic performances of different haplotypes and observed no linkage drag of the alien introgression for the 15 tested traits. For marker-assisted selection of QYm.nau-2D, we developed 11 diagnostic markers tightly linked to the locus. This research provided a case study of an exotic introgression, which has been utilized in wheat improvement for WYMV resistance.


Assuntos
Vírus do Mosaico , Potyviridae , Triticum/genética , Mapeamento Cromossômico , Marcadores Genéticos , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Melhoramento Vegetal
12.
Inorg Chem ; 62(2): 916-929, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36584668

RESUMO

The strong tendency to stack in the solid state and rich luminescence for the Pt(II) complexes makes them potential candidates as new mechanochromic materials and sensing applications. Six mononuclear complexes [Pt(ppy)(O4NCS2)] (1), [Pt(bpy)(O4NCS2)]ClO4 (2), [Pt(ppy)(O5NCS2)] (3), [Pt(phen)(O4NCS2)]ClO4·CH3OH (5a), [Pt(phen)(O4NCS2)]ClO4 (5b), and [Pt(phen)(O5NCS2)]ClO4 (6a), one dinuclear complex [Pt2(phen)2(NaO5NCS2)2(ClO4)3]ClO4 (6b), and one one-dimensional (1-D) coordination polymer {[Pt2(bpy)2(NaO5NCS2)2(ClO4)2](ClO4)2}n (4) were synthesized by reacting [Pt(ppy)Cl]2, Pt(bpy)Cl2, and Pt(phen)Cl2 (ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline) with (1-aza-15-crown-5)dithiocarbamate (O4NCS2) or (1-aza-18-crown-6)dithiocarbamate (O5NCS2), respectively, which have been isolated and structurally characterized by X-ray diffraction. Neutral complexes 1 and 3 contain no intermolecular Pt(II)···Pt(II) contact, whereas cationic complexes 2, 5a, 5b, and 6a with ClO4- as counteranions show alternative intermolecular Pt(II)···Pt(II) contacts of 3.535/4.091, 3.480/5.001, 3.527/4.571, and 3.446/4.987 Å in the solid state, respectively. Interestingly, complex 4 forms a 1-D coordination polymer through coordination between the encapsulated Na+ ions inside the azacrown ether rings of O5NCS2 and ClO4- anions with respective intra- and intermolecular Pt(II)···Pt(II) contacts of 3.402 and 3.847 Å in crystal lattices, whereas a dinuclear complex 6b was surprisingly formed and also connected by the encapsulated Na+ ions and ClO4- anions with alternative intra- and intermolecular Pt(II)···Pt(II) contacts of 3.650 and 3.677/4.4.372 Å, respectively. Upon excitation, complexes 1 and 3 showed similar vibronic luminescence at 507, 534, and 502, 532 nm, respectively, and the other complexes 2 and 4-6 showed broad luminescence with maxima at 537-567 nm. The B3LYP/LanL2DZ calculation was carried out and used to clarify their excited-state properties. In addition, the powder samples for complexes 1-4 almost showed no energy shift for the luminescence and significantly those of complexes 5-6 exhibited the mechanochromic luminescence upon grinding. It is noted that complexes 5a and 6a only showed minor red shifts (i.e., from 544 to 556 nm for complex 5a and from 551 to 565 nm for complex 6a), whereas complex 6b exhibited a remarkable red shift from 558 to 603 nm upon grinding. Besides, their luminescence reversibility was also examined toward various solvents.

13.
ACS Cent Sci ; 9(12): 2241-2250, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38161363

RESUMO

Reactions in interstellar ices are shown to be capable of producing key prebiotic molecules without energetic radiation that are necessary for the origins of life. When present in interstellar ices, carbamic acid (H2NCOOH) can serve as a condensed-phase source of the molecular building blocks for more complex proteinogenic amino acids. Here, Fourier transform infrared spectroscopy during heating of analogue interstellar ices composed of carbon dioxide and ammonia identifies the lower limit for thermal synthesis to be 62 ± 3 K for carbamic acid and 39 ± 4 K for its salt ammonium carbamate ([H2NCOO-][NH4+]). While solvation increases the rates of formation and decomposition of carbamic acid in ice, the absence of solvent effects after sublimation results in a significant barrier to dissociation and a stable gas-phase molecule. Photoionization reflectron time-of-flight mass spectrometry permits an unprecedented degree of sensitivity toward gaseous carbamic acid and demonstrates sublimation of carbamic acid from decomposition of ammonium carbamate and again at higher temperatures from carbamic acid dimers. Since the dimer is observed at temperatures up to 290 K, similar to the environment of a protoplanetary disk, this dimer is a promising reservoir of amino acids during the formation of stars and planets.

14.
Sensors (Basel) ; 22(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366081

RESUMO

To date, most existing forest fire smoke detection methods rely on coarse-grained identification, which only distinguishes between smoke and non-smoke. Thus, non-fire smoke and fire smoke are treated the same in these methods, resulting in false alarms within the smoke classes. The fine-grained identification of smoke which can identify differences between non-fire and fire smoke is of great significance for accurate forest fire monitoring; however, it requires a large database. In this paper, for the first time, we combine fine-grained smoke recognition with the few-shot technique using metric learning to identify fire smoke with the limited available database. The experimental comparison and analysis show that the new method developed has good performance in the structure of the feature extraction network and the training method, with an accuracy of 93.75% for fire smoke identification.


Assuntos
Incêndios , Incêndios Florestais , Fumaça/análise , Florestas , Coleta de Dados
15.
Viruses ; 14(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298813

RESUMO

Rice (Oryza sativa L.) is one of the major staple foods for global consumption. A major roadblock to global rice production is persistent loss of crops caused by plant diseases, including rice blast, sheath blight, bacterial blight, and particularly various vector-borne rice viral diseases. Since the late 19th century, 19 species of rice viruses have been recorded in rice-producing areas worldwide and cause varying degrees of damage on the rice production. Among them, southern rice black-streaked dwarf virus (SRBSDV) and rice black-streaked dwarf virus (RBSDV) in Asia, rice yellow mottle virus (RYMV) in Africa, and rice stripe necrosis virus (RSNV) in America currently pose serious threats to rice yields. This review systematizes the emergence and damage of rice viral diseases, the symptomatology and transmission biology of rice viruses, the arm races between viruses and rice plants as well as their insect vectors, and the strategies for the prevention and control of rice viral diseases.


Assuntos
Hemípteros , Oryza , Vírus de Plantas , Reoviridae , Animais , Doenças das Plantas , Insetos Vetores , Ásia , África
16.
Sensors (Basel) ; 22(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746436

RESUMO

The advances in developing more accurate and fast smoke detection algorithms increase the need for computation in smoke detection, which demands the involvement of personal computers or workstations. Better detection results require a more complex network structure of the smoke detection algorithms and higher hardware configuration, which disqualify them as lightweight portable smoke detection for high detection efficiency. To solve this challenge, this paper designs a lightweight portable remote smoke front-end perception platform based on the Raspberry Pi under Linux operating system. The platform has four modules including a source video input module, a target detection module, a display module, and an alarm module. The training images from the public data sets will be used to train a cascade classifier characterized by Local Binary Pattern (LBP) using the Adaboost algorithm in OpenCV. Then the classifier will be used to detect the smoke target in the following video stream and the detected results will be dynamically displayed in the display module in real-time. If smoke is detected, warning messages will be sent to users by the alarm module in the platform for real-time monitoring and warning on the scene. Case studies showed that the developed system platform has strong robustness under the test datasets with high detection accuracy. As the designed platform is portable without the involvement of a personal computer and can efficiently detect smoke in real-time, it provides a potential affordable lightweight smoke detection option for forest fire monitoring in practice.


Assuntos
Algoritmos , Fumaça
17.
Front Microbiol ; 13: 897589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747367

RESUMO

Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.

18.
J Phys Chem A ; 126(21): 3347-3357, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35584043

RESUMO

We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.

19.
Plant Dis ; 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451860

RESUMO

Pratylenchus coffeae Filipjev & Schuurmans Stekhoven, 1941, is one of the most important root-lesion nematodes (RLN) parasitizing many agronomic and industrial crops (Wang et al. 2021). Corn (Zea mays L.) is one economically important crop in China, with 35 million hectares cultivated annually (Li et al. 2019). In July 2019, a survey of RLN was carried out in corn field planting with cultivar Heyu 187 in Chuanba village in Qitai County, Xinjiang Uygur Autonomous Region, China. Five root/soil samples were collected from poor growing plants with distinct brown lesions. Nematodes were extracted from the collected root/soil samples with the modified Baermann funnel method (Hooper et al. 2005). The average of 157 RLN per 100 cm3 of soil and 43 RLN per gram of fresh root were extracted. The obtained RLN were sterilized with 0.3% streptomycin sulfate and cultured on carrot disks at 25°C. Twenty petri dishes with carrot disks, each inoculated with one female. The morphological and molecular characteristics of RLN cultured on carrot disks were examined for species identification. Morphological measurements of adult females (n=15) included body length (range = 529.0 to 658.0 µm, mean = 571.0 µm), head with two lip annuli, stylet (15.5 to 17.0 µm, 16.0 µm), tail length (27.5 to 32.5 µm, 30.5 µm), a (23.8 to 32.9, 28.5), b (5.8 to 7.1, 6.5), c (16.5 to 23.4, 18.9), and V (76.6 to 83.1%, 80.8%). Morphological measurements of adult males (n=15) were body length (range = 479.5 to 568.0 µm, mean = 516.0 µm), head with two lip annuli, stylet (14.5 to 15.5 µm, 15.0 µm), tail length (24.0 to 29.0 µm, 26.0 µm), spicule length (16.4 to 19.0 µm, 17.5 µm), gubernaculum length (4.4 to 5.3 µm, 4.9 µm), a (29.2 to 32.5, 31.0), b (5.7 to 6.9, 6.2), and c (18.2 to 22.6, 19.8). The morphological characters of this population are consistent with the description of P. coffeae (Castillo and Vovlas, 2007). Nematode DNA was extracted from an individual female. The primers of D2A/D3B (5'-ACAAGTACCGTGAGGGAAAGTTG-3'/5'-TCGGAAGGAACCAGCTACTA-3') (Subbotin et al. 2006) and 18S/26S (5'-TTGATTACGTCCCTGCCCTTT-3' / 5'-TTTCACTCGCCGTTACTAAGG-3') (Vrain et al. 1992) were used to amplify the D2/D3 expansion region of the 28S rRNA gene and the rDNA internal transcribed spacer (ITS) region, respectively. The PCR products were purified and transformed to E. coli strain DH5α, and then sequenced by Sangon Biotech Co. Ltd. (Shanghai, China). The obtained sequences of the D2/D3 region (793 bp) and the ITS region (1,242 bp) were submitted to GenBank, and the accession numbers for D2/D3 region were OK103614 and OK103619 which had 98.6% and 100% identity with the reported P. coffeae sequences (KC490925); the two obtained ITS sequences accession numbers OK103603 and OK103613) had more than 99% identity with published P. coffeae sequences from GenBank (e.g., LC030410, LC030395, MH134508 and LC030380). Hence, both morphological and molecular data demonstrated the presence of P. coffeae. To further confirm reproduction on corn, the obtained RLN population was used to inoculate corn plants in 2-liter pots containing 1.8-liter sterilized and mixed soil with 2 pastoral soil: 1 substrate in greenhouse at 27°C. About 15 days after sowing, each pot with one corn plant (cv. Heyu 187) with the same growth status was selected to inoculate P. coffeae. Five small holes near the roots were made using a glass rod. Approximately 1,000 mixed stage nematodes of P. coffeae were then pipetted into the holes of each plant. Eight replications were performed. Eight additional pots of uninoculated corn plants were used as control. After 2 months, corn roots were washed and brown lesions were observed on roots. The average number of RLN/pot was approximately 5,030 in soil and 2,870 in roots, and each pot had an average of 7.9 reproduction factors (final population/initial population), indicating that this nematode population infects and reproduces well on this corn cultivar. No nematodes and symptoms was detected in the control pot. The nematode of P. coffeae has only been reported on corn in Guangdong, Liaoning, Shangdong and Henan Provinces in China (Liu et al. 1996; Liu et al. 2001; Xia et al. 2021). To our knowledge, this is the first report of P. coffeae infecting corn in Xinjiang Uygur Autonomous Region of China. Since RLN can cause considerable damage to corn, one of the most important food crops produced in China, strategic measures should be taken to prevent the spread of P. coffeae to other regions.

20.
Biochem Genet ; 60(5): 1601-1614, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35064361

RESUMO

Homeobox transcription factors have been implicated in filamentous growth, conidia formation and virulence in fungal pathogens. However, the presence of the homeobox gene family and their potential influence on pathogenesis in Fusarium pseudograminearum have not been investigated. F. pseudograminearum is an important plant pathogen that causes wheat and barley crown rot. In this study, we performed a genome-wide survey for F. pseudograminearum homeobox genes, and 11 FpHtfs were identified and characterized. Domain analyses revealed that all of these proteins contain a complete homeobox domain that contains three helices. Expression profiles of FpHtf genes at different pathogen stages showed that six FpHtf genes were induced during infection. Further, we generated and characterized FpHtf3 deletion mutants in F. pseudograminearum, showing it was essential for virulence. These results indicated that members of the homeobox gene family are likely involved in F. pseudograminearum pathogenicity. Our work also provides a useful foundation for further studies on the complexity and function of the homeobox gene family in F. pseudograminearum.


Assuntos
Fusarium , Genes Homeobox , Fusarium/genética , Fusarium/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA