Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Environ Pollut ; 352: 124130, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729511

RESUMO

Particulate matter (PM) has been a dominant contributor to air contamination, which will enter the central nervous system (CNS), causing neurotoxicity. However, the biological mechanism is poorly identified. In this study, C57BL/6J mice were applied to evaluate the neurotoxicity of collected fine particulate matter (PM2.5), via oropharyngeal aspiration at two ambient equivalent concentrations. The Y-maze results showed that PM2.5 exposure in mice would lead to the damage in hippocampal-dependent working memory. In addition, cell neuroinflammation, microglial activation were detected in hippocampus of PM2.5-exposure mice. To confirm the underlying mechanism, the microarray assay was conducted to screen the differentially expressed genes (DEGs) in microglia after PM2.5 exposure, and the results indicated the enrichment of DEGs in ferroptosis pathways. Furthermore, Heme oxygenase-1 (Hmox1) was found to be one of the most remarkably upregulated genes after PM2.5 exposure for 24 h. And PM2.5 exposure induced ferroptosis with iron accumulation through heme degradation by Nrf2-mediated Hmox1 upregulation, which could be eliminated by Nrf2-inhibition. Meanwhile, Hmox1 antagonist zinc protoporphyrin IX (ZnPP) could protect BV2 cells from ferroptosis. The results taken together indicated that PM2.5 resulted in the ferroptosis by causing iron overload through Nrf2/Hmox1 signaling pathway, which could account for the inflammation in microglia.

2.
BMC Infect Dis ; 24(1): 426, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649799

RESUMO

BACKGROUND: Severe acute respiratory infection (SARI), a significant global health concern, imposes a substantial disease burden. In China, there is inadequate data concerning the monitoring of respiratory pathogens, particularly bacteria, among patients with SARI. Therefore, this study aims to delineate the demographic, epidemiological, and aetiological characteristics of hospitalised SARI patients in Central China between 2018 and 2020. METHODS: Eligible patients with SARI admitted to the First Affiliated Hospital of Zhengzhou University between 1 January 2018 and 31 December 2020 were included in this retrospective study. Within the first 24 h of admission, respiratory (including sputum, nasal/throat swabs, bronchoalveolar lavage fluid, thoracocentesis fluid, etc.), urine, and peripheral blood specimens were collected for viral and bacterial testing. A multiplex real-time polymerase chain reaction (PCR) diagnostic approach was used to identify human influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, human bocavirus, human coronavirus, human metapneumovirus, and rhinovirus. Bacterial cultures of respiratory specimens were performed with a particular focus on pathogenic microorganisms, including S. pneumoniae, S. aureus, K. pneumoniae, P. aeruginosa, Strep A, H. influenzae, A. baumannii, and E. coli. In cases where bacterial culture results were negative, nucleic acid extraction was performed for PCR to assay for the above-mentioned eight bacteria, as well as L. pneumophila and M. pneumoniae. Additionally, urine specimens were exclusively used to detect Legionella antigens. Furthermore, epidemiological, demographic, and clinical data were obtained from electronic medical records. RESULTS: The study encompassed 1266 patients, with a mean age of 54 years, among whom 61.6% (780/1266) were males, 61.4% (778/1266) were farmers, and 88.8% (1124/1266) sought medical treatment in 2020. Moreover, 80.3% (1017/1266) were housed in general wards. The most common respiratory symptoms included fever (86.8%, 1122/1266) and cough (77.8%, 986/1266). Chest imaging anomalies were detected in 62.6% (792/1266) of cases, and 58.1% (736/1266) exhibited at least one respiratory pathogen, with 28.5% (361/1266) having multiple infections. Additionally, 95.7% (1212/1266) of the patients were from Henan Province, with the highest proportion (38.3%, 486/1266) falling in the 61-80 years age bracket, predominantly (79.8%, 1010/1266) seeking medical aid in summer and autumn. Bacterial detection rate (39.0%, 495/1266) was higher than viral detection rate (36.9%, 468/1266), with the primary pathogens being influenza virus (13.8%, 175/1266), K. pneumoniae (10.0%, 127/1266), S. pneumoniae (10.0%, 127/1266), adenovirus (8.2%, 105/1266), P. aeruginosa (8.2%, 105/1266), M. pneumoniae (7.8%, 100/1266), and respiratory syncytial virus (7.7%, 98/1266). During spring and winter, there was a significant prevalence of influenza virus and human coronavirus, contrasting with the dominance of parainfluenza viruses in summer and autumn. Respiratory syncytial virus and rhinovirus exhibited higher prevalence across spring, summer, and winter. P. aeruginosa, K. pneumoniae, and M. pneumoniae were identified at similar rates throughout all seasons without distinct spikes in prevalence. However, S. pneumoniae showed a distinctive pattern with a prevalence that doubled during summer and winter. Moreover, the positive detection rates of various other viruses and bacteria were lower, displaying a comparatively erratic prevalence trend. Among patients admitted to the intensive care unit, the predominant nosocomial bacteria were K. pneumoniae (17.2%, 43/249), A. baumannii (13.6%, 34/249), and P. aeruginosa (12.4%, 31/249). Conversely, in patients from general wards, predominant pathogens included influenza virus (14.8%, 151/1017), S. pneumoniae (10.4%, 106/1017), and adenovirus (9.3%, 95/1017). Additionally, paediatric patients exhibited significantly higher positive detection rates for influenza virus (23.9%, 11/46) and M. pneumoniae (32.6%, 15/46) compared to adults and the elderly. Furthermore, adenovirus (10.0%, 67/669) and rhinovirus (6.4%, 43/669) were the primary pathogens in adults, while K. pneumoniae (11.8%, 65/551) and A. baumannii (7.1%, 39/551) prevailed among the elderly, indicating significant differences among the three age groups. DISCUSSION: In Central China, among patients with SARI, the prevailing viruses included influenza virus, adenovirus, and respiratory syncytial virus. Among bacteria, K. pneumoniae, S. pneumoniae, P. aeruginosa, and M. pneumoniae were frequently identified, with multiple infections being very common. Additionally, there were substantial variations in the pathogen spectrum compositions concerning wards and age groups among patients. Consequently, this study holds promise in offering insights to the government for developing strategies aimed at preventing and managing respiratory infectious diseases effectively.


Assuntos
Infecções Respiratórias , Humanos , China/epidemiologia , Estudos Retrospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Doença Aguda , Lactente , Idoso de 80 Anos ou mais , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética , Hospitalização/estatística & dados numéricos
3.
Eur J Med Chem ; 264: 115997, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056303

RESUMO

The suppression of ferroptosis is emerging as a promising therapeutic strategy for effectively treating a wide range of diseases, including neurodegenerative disorders, organ ischemia-reperfusion injury, and inflammatory conditions. However, the clinical utility of ferroptosis inhibitors is significantly impeded by the limited availability of rational drug designs. In our previous study, we successfully unraveled the efficacy of ferrostatin-1 (Fer-1) attributed to the synergistic effect of its ortho-diamine (-NH) moiety. In this study, we present the discovery of the ortho-hydroxyl-amino moiety as a novel scaffold for ferroptosis inhibitors, employing quantum chemistry as well as in vitro and in vivo assays. 2-amino-6-methylphenol derivatives demonstrated remarkable inhibition of RSL3-induced ferroptosis, exhibiting EC50 values ranging from 25 nM to 207 nM. These compounds do not appear to modulate iron homeostasis or lipid reactive oxygen species (ROS) generation pathways. Nevertheless, they effectively prevent the accumulation of lipid peroxides in living cells. Furthermore, compound 13 exhibits good in vivo activities as it effectively protect mice from kidney ischemia-reperfusion injury. In summary, compound 13 has been identified as a potent ferroptosis inhibitor, warranting further investigation as a promising lead compound.


Assuntos
Peróxidos Lipídicos , Traumatismo por Reperfusão , Animais , Camundongos , Peroxidação de Lipídeos , Peróxidos Lipídicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Fenóis/farmacologia
4.
Front Cell Infect Microbiol ; 13: 1274690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149007

RESUMO

Background: Human gut microbiota play a crucial role in the immune response of the host to respiratory viral infection. However, evidence regarding the association between the gut microbiome, host immune responses, and disease severity in coronavirus disease 2019 (COVID-19) remains insufficient. Methods: To better comprehend the interactions between the host and gut microbiota in COVID-19, we conducted 16S rRNA sequencing and characterized the gut microbiome compositions in stool samples from 40 COVID-19 patients and 33 non-pneumonia controls. We assessed several hematological parameters to determine the immune status. Results: We found that the gut microbial composition was significantly changed in COVID-19 patients, which was characterized by increased opportunistic pathogens and decreased commensal bacteria. The frequency of prevalent opportunistic pathogens Enterococcus and Lactobacillus increased, especially in severe patients; yet the abundance of butyrate-producing bacteria, Faecalibacterium, Roseburia, and Anaerostipes, decreased significantly, and Faecalibacterium prausnitzii might help discriminate severe patients from moderate patients and non-pneumonia people. Furthermore, we then obtained a correlation map between the clinical characteristics of COVID-19 and severity-related gut microbiota. We observed a notable correlation between the abundance of Enterococcus faecium and abnormal neutrophil or lymphocyte percentage in all COVID-19 patients. Faecalibacterium was positively correlated with lymphocyte counts, while negatively correlated with neutrophil percentage. Conclusion: These results suggested that the gut microbiome could have a potential function in regulating host immune responses and impacting the severity or consequences of diseases.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , RNA Ribossômico 16S/genética , Clostridiales/genética , Gravidade do Paciente , Imunidade
5.
Anim Biotechnol ; 34(8): 3855-3866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37466384

RESUMO

Receptor-interacting protein 2 (RIP2) plays a critical role in the transduction of many signaling pathways and is associated with many diseases. Alternative splicing (AS) is an essential and ubiquitous regulatory mechanism of gene expression that contributes to distinct transcript variants and many different kinds of proteins. In this present study, we characterized genome-wide AS events in wild-type chicken macrophages (WT) and RIP2 overexpression/knockdown chicken macrophages (oeRIP2/shRIP2) by high-throughput RNA sequencing technology. A total of 1901, 2061, and 817 differentially expressed (DE) AS genes were identified in the comparison of oeRIP2 vs. WT, oeRIP2 vs. shRIP2, and shRIP2 vs. WT, respectively. These DE AS genes participated in many important KEGG pathways, including regulation of autophagy, Wnt signaling pathway, Ubiquitin mediated proteolysis, MAPK signaling pathway, and Focal adhesion, etc. In conclusion, this research provided a broad atlas of the genome-wide scale of the AS event landscape in RIP2 overexpression/knockdown and wild-type chicken macrophages. This research also provides the theoretical basis of the gene network related to RIP2.


Assuntos
Processamento Alternativo , Galinhas , Animais , Galinhas/genética , Processamento Alternativo/genética , Transdução de Sinais , Macrófagos/metabolismo
6.
Anim Biotechnol ; 34(8): 3681-3692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37083115

RESUMO

Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Galinhas/genética , Processamento Alternativo/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
7.
Int J Radiat Oncol Biol Phys ; 115(5): 1229-1243, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529557

RESUMO

PURPOSE: Radiation-induced myocardial fibrosis (RIMF) is a severe delayed complication of thoracic irradiation (IR). Endothelin-1 (ET-1) is critical in cardiac fibroblast activation, and docosahexaenoic acid (DHA) is protective against various cardiac diseases. This study aimed to explore the roles of ET-1 in RIMF and the potential of DHA in preventing RIMF. METHODS AND MATERIALS: Hematoxylin and eosin, sirius red, and Masson trichrome staining were carried out to evaluate the histopathologic conditions in mouse models. Enzyme-linked immunosorbent assays were used to detect the concentration of ET-1 in serum and cell supernatants. Western blotting, immunofluorescence, and immunohistochemistry were used to assess the protein levels. The phenotypic alterations of cardiac fibroblasts were evaluated by cell proliferation/migration assays and α-smooth muscle actin (α-SMA) detection. RESULTS: Radiation increased ET-1 expression and secretion by increasing p38 phosphorylation in cardiomyocytes, and ET-1 markedly promoted the activation of cardiac fibroblasts, which were characterized by enhanced fibroblast proliferation, migration, and α-SMA expression. Cardiomyocyte-derived ET-1 mediated radiation-induced fibroblast activation by targeting the PI3K-AKT and MEK-ERK pathways in fibroblasts. DHA suppressed ET-1 levels by blocking p38 signaling in cardiomyocytes and significantly attenuated the activation of cardiac fibroblasts induced by the IR/ET-1 axis. Importantly, DHA decreased collagen deposition and α-SMA expression, alleviating cardiac fibrosis caused by radiation in mouse models. CONCLUSIONS: Our findings demonstrate that radiation facilitates cardiac fibroblast activation by enhancing p38/ET-1 signaling in cardiomyocytes, revealing the IR/p38/ET-1 regulatory axis in RIMF for the first time. DHA effectively inhibits fibroblast activation by targeting p38/ET-1 and can be recognized as a promising protective agent against RIMF.


Assuntos
Endotelina-1 , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Endotelina-1/metabolismo , Endotelina-1/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose , Fibroblastos/metabolismo
8.
Avian Pathol ; 52(1): 62-77, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399118

RESUMO

Avian pathogenic E. coli (APEC) can cause localized and systemic diseases in poultry, threatening human health via meat or egg contamination and resulting in considerable economic losses to the poultry industry globally. Increasing evidence shows circRNAs were widely involved in various biological processes. However, the role of circRNAs in the host response against APEC infection, especially correlated with the regulation of RIP2, remains unclear. Herein, the RNAseq technology was used to identify the circRNA expression profiles in the overexpression of RIP2 macrophages with or without APEC infection. A total of 256 and 287 differentially expressed (DE) circRNAs were identified in the overexpression of RIP2 group (oeRIP2) vs. the wild-type group (WT) and oeRIP2 + APEC vs. APEC, respectively, whose parental genes were involved in MAPK signalling pathway, Wnt signalling pathway, focal adhesion, tight junction, and VEGF signalling pathways. Specifically, the key circRNAs, such as 5:814443-825127, 10:18922360-18928461, 2:8746306-8750639, and 2:124177751-124184063 might play a critical role in APEC infection and the regulation of RIP2. As a whole, these findings will facilitate understanding the molecular mechanism underlying circRNAs, especially related to the regulation of the RIP2 gene. Meanwhile, the study may offer new ideas to improve host immune and inflammatory response against APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Galinhas/genética , Escherichia coli/genética , RNA Circular/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Macrófagos , Doenças das Aves Domésticas/patologia
9.
Anim Biotechnol ; 34(1): 56-66, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34153202

RESUMO

Mono-Sex culturing is an important methodology for intensive livestock and poultry production. Here, Hintw was identified as a potential key gene in sex-determination process in chickens via RNA-seq. Then we developed an effective method to interfere or overexpress Hintw in chicken embryos through the intravascular injection. QRT-PCR, ELISA and H&E staining were used to detect the effects of Hintw on gonadal development of chicken embryos. Results showed that Hintw exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads. The qRT-PCR analysis showed that Foxl2, Cyp19a1 in females were upregulated under the overexpression of Hintw, while Sox9 and Dmrt1 were downregulated Hintw. Overexpression of Hintw can promote the development of gonadal cortex, while interference with Hintw show the opposite result. Additionally, we found that overexpression of the Hintw in male chicken embryos could inhibit androgen levels and increase estrogen levels. On the other hand, interfering with Hintw in female chicken embryos decreased estrogen levels and increased androgen levels. In conclusion, this work sets the basis for the understanding of the molecular regulatory network for the sex-determination process in chicken embryos as well as providing the theoretical basis for mono-sex culturing of poultry.


Assuntos
Proteínas Aviárias , Galinhas , Processos de Determinação Sexual , Animais , Embrião de Galinha , Feminino , Masculino , Androgênios/metabolismo , Galinhas/genética , Estrogênios/metabolismo , Gônadas/metabolismo , Diferenciação Sexual , Proteínas Aviárias/metabolismo
10.
Int J Radiat Oncol Biol Phys ; 115(2): 476-489, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450754

RESUMO

PURPOSE: Radiation-induced lung fibrosis (RILF) is a serious late complication of thoracic radiation therapy. Inflammation is crucial in fibroblast activation and RILF, and arachidonic acid (AA) is an important inflammatory mediator released by cytosolic phospholipase A2 (cPLA2) and reduced by arachidonyl trifluoromethyl ketone (ATK)-targeting of cPLA2. Here, we aimed to investigate the roles of the cPLA2/AA pathway in RILF and assess the potential of targeting cPLA2 to prevent RILF. METHODS AND MATERIALS: A computed tomography scan was used to obtain the mean lung density, and hematoxylin-eosin, Masson's trichrome, and Sirius Red staining were used to assess the histopathologic conditions in mouse models. AA levels in mouse serum and cell supernatants were tested by enzyme-linked immunosorbent assay. Fibroblast phenotype alterations were examined by a Cell Counting Kit-8, manual cell counting, and a Transwell system. The protein levels were evaluated via Western blotting, immunofluorescence, and immunohistochemistry. RESULTS: AA protected fibroblasts against radiation-induced growth inhibition and promoted fibroblast activation, which was characterized by enhanced α-smooth muscle actin expression and migration capacity. Radiation could activate fibroblasts by upregulating cPLA2 expression and AA production, which could be reversed by ATK. Moreover, inhibiting cPLA2 with ATK significantly attenuated collagen deposition and radiation-induced pulmonary fibrosis in mouse models. We further identified extracellular-signal regulated protein kinase (ERK) as the downstream target of the radiation-AA regulatory axis. Radiation-induced AA increased phosphorylated-ERK levels, promoting cyclinD1, cyclin-dependent kinase 6, and α-smooth muscle actin expression and contributing to fibroblast activation. Inhibiting P-ERK impaired radiation- and AA-induced fibroblast activation. The related molecular mechanisms were verified using specimens from animal models. CONCLUSIONS: Our findings uncover the role of the cPLA2/AA-ERK regulatory axis in response to radiation in pulmonary fibroblast activation and recognize cPLA2 as the key regulatory molecule during RILF for the first time. Targeting cPLA2 may be a promising protective strategy against RILF.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Fosfolipases A2 , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/prevenção & controle , Actinas , Citosol/metabolismo , Pulmão/metabolismo
11.
Front Cell Infect Microbiol ; 13: 1291980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264726

RESUMO

Introduction: Pneumonia are the leading cause of death worldwide, and antibiotic treatment remains fundamental. However, conventional sputum smears or cultures are still inefficient for obtaining pathogenic microorganisms.Metagenomic next-generation sequencing (mNGS) has shown great value in nucleic acid detection, however, the NGS results for lower respiratory tract microorganisms are still poorly studied. Methods: This study dealt with investigating the efficacy of mNGS in detecting pathogens in the lower respiratory tract of patients with pulmonary infections. A total of 112 patients admitted at the First Affiliated Hospital of Zhengzhou University between April 30, 2018, and June 30, 2020, were enrolled in this retrospective study. The bronchoalveolar lavage fluid (BALF) was obtained from lower respiratory tract from each patient. Routine methods (bacterial smear and culture) and mNGS were employed for the identification of pathogenic microorganisms in BALF. Results: The average patient age was 53.0 years, with 94.6% (106/112) obtaining pathogenic microorganism results. The total mNGS detection rate of pathogenic microorganisms significantly surpassed conventional methods (93.7% vs. 32.1%, P < 0.05). Notably, 75% of patients (84/112) were found to have bacteria by mNGS, but only 28.6% (32/112) were found to have bacteria by conventional approaches. The most commonly detected bacteria included Acinetobacter baumannii (19.6%), Klebsiella pneumoniae (17.9%), Pseudomonas aeruginosa (14.3%), Staphylococcus faecium (12.5%), Enterococcus faecium (12.5%), and Haemophilus parainfluenzae (11.6%). In 29.5% (33/112) of patients, fungi were identified using mNGS, including 23 cases of Candida albicans (20.5%), 18 of Pneumocystis carinii (16.1%), and 10 of Aspergillus (8.9%). However, only 7.1 % (8/112) of individuals were found to have fungi when conventional procedures were used. The mNGS detection rate of viruses was significantly higher than the conventional method rate (43.8% vs. 0.9%, P < 0.05). The most commonly detected viruses included Epstein-Barr virus (15.2%), cytomegalovirus (13.4%), circovirus (8.9%), human coronavirus (4.5%), and rhinovirus (4.5%). Only 29.4% (33/112) of patients were positive, whereas 5.4% (6/112) of patients were negative for both detection methods as shown by Kappa analysis, indicating poor consistency between the two methods (P = 0.340; Kappa analysis). Conclusion: Significant benefits of mNGS have been shown in the detection of pathogenic microorganisms in patients with pulmonary infection. For those with suboptimal therapeutic responses, mNGS can provide an etiological basis, aiding in precise anti-infective treatment.


Assuntos
Infecções por Vírus Epstein-Barr , Pneumonia , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Herpesvirus Humano 4 , Sequenciamento de Nucleotídeos em Larga Escala , Sistema Respiratório
12.
Front Vet Sci ; 9: 1005899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187840

RESUMO

Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.

13.
Front Pharmacol ; 13: 811372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645808

RESUMO

This study explored the role of metformin (MET) in regulating the polarization of alveolar macrophages to protect against acute lung injury (ALI) in rats caused by paraquat (PQ) poisoning. The in vivo studies showed that the 35 mg/kg dose of MET increased the survival rate of rats, alleviated pathological damages to the lungs and their systemic inflammation, promoted the reduction of the pro-inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels, and increased the anti-inflammatory factor IL-10 levels in the rat serum. At the same time, the MET intervention decreased the expression of M1 macrophage marker iNOS in the lungs of the PQ-poisoned rats while increasing the M2 macrophage marker, Arg1, expression. In vitro, the concentration of MET > 10 mmol/L affected NR8383 viability adversely and was concentration-dependent; however, no adverse impact on NR8383 viability was observed at MET ≤ 10 mmol/L concentration, resisting the reducing effect of PQ on NR8383 vitality. The PQ-induced NR8383 model with MET intervention showed significantly reduced secretions of IL-6 and TNF-α in NR8383, and lowered expressions of M1 macrophage markers iNOS and CD86. Additionally, MET increased IL-10 secretion and the M2 macrophage markers, Arg1 and Mrcl, expressions. Therefore, we speculate that MET could regulate alveolar macrophage polarization to protect against PQ-poisoning caused ALI.

14.
Am J Med Sci ; 363(3): 267-272, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34793708

RESUMO

Lung damage is a characteristic feature of paraquat intoxication; most deaths resulting from ingesting paraquat are due to progressive respiratory failure. Liver failure caused by paraquat intoxication is rare. A case of orally ingested paraquat intoxication is reported in which serious liver injury and toxic encephalopathy were observed, but little lung damage was found. The principal systemic symptom was severe liver injury, characterized by cholestasis, that gradually became aggravated. In addition to standard treatment, aggressive treatment through liver protection and cholestasis was administered. Finally, liver function returned to normal and central nervous system symptoms were controlled. The patient was successfully discharged. This case suggests that the hepatotoxicity of paraquat intoxication is possibly characterized by cholestasis, and the treatment of cholestasis promotes recovery of severe hepatocyte damage.


Assuntos
Encefalopatias , Doença Hepática Induzida por Substâncias e Drogas , Colestase , Insuficiência Respiratória , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Paraquat , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/terapia
15.
Ecotoxicol Environ Saf ; 223: 112571, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352584

RESUMO

The present study investigates whether paraquat (PQ) regulates polarization of alveolar macrophages through glycolysis and promotes the occurrence of acute lung injury in rats. In vivo, the PQ intraperitoneal injection was used to construct a model of acute lung injury in rats. In vitro, the study measured the effect of different concentrations of PQ on the viability of the alveolar macrophages, and explored the polarization and glycolysis metabolism of alveolar macrophages at different time points after PQ intervention. Compared with the normal control (NC) group, the lung pathological damage in rats increased gradually after PQ poisoning, reaching a significant degree at 48 h after poisoning. The PQ-poisoned rat serum showed increased expressions of interleukin-6 (IL-6), tumor necrosis factor- α (TNF-α), and M1 macrophage marker, iNOS, while the expression of interleukin-10 (IL-10) and M2 macrophage marker, Arg1, decreased. The toxic effect of PQ on alveolar macrophages was dose- and time-dependent. Compared with the NC group, IL-6 and TNF-α in the cell supernatant gradually increased after PQ intervention, while the IL-10 content gradually decreased. The PQ intervention in alveolar macrophages increased the expression of intracellular glycolysis rate-limiting enzyme pyruvate kinase isozymes M1/M2 (PKM1/M2), lactate, lactate/pyruvate ratio, and the polarization of alveolar macrophage towards M1. Inhibition of cellular glycolysis significantly reduced the PQ-induced alveolar macrophage polarization to M1 type. Thus, PQ induced increased polarization of lung macrophages toward M1 and decreased polarization toward M2, promoting acute lung injury. Therefore, it can be concluded that PQ regulates the polarization of alveolar macrophages through glycolysis.


Assuntos
Lesão Pulmonar Aguda , Paraquat , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Glicólise , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Paraquat/toxicidade , Ratos , Fator de Necrose Tumoral alfa/metabolismo
16.
Aging (Albany NY) ; 13(15): 19475-19485, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388114

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of malignant tumor in the kidney. With numbers of patients whose physical condition or tumor stage not suitable for radical surgery, they only have a narrow choice of using VEGF/mTOR targeted drugs to control their tumors, but ccRCC often shows resistance to these drugs. Therefore, identifying a new therapeutic target is of urgent necessity. In this study, for the first time, we concluded from bioinformatics analyses and in vitro research that FK506 binding protein 10 (FKBP10), together with its molecular partner Lysyl hydroxylase 2 (LH2/PLOD2), participate in the process of type I collagen synthesis in ccRCC via regulating crosslinking of pro-collagen chains. Our findings may provide a potential therapeutic target to treat ccRCC in the future.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Proteínas de Ligação a Tacrolimo/genética , Carcinoma de Células Renais/metabolismo , Colágeno Tipo I/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Prognóstico , Proteínas de Ligação a Tacrolimo/metabolismo
17.
Animals (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065391

RESUMO

Alternative splicing (AS) is a ubiquitous, co-transcriptional, and post-transcriptional regulation mechanism during certain developmental processes, such as germ cell differentiation. A thorough understanding of germ cell differentiation will help us to open new avenues for avian reproduction, stem cell biology, and advances in medicines for human consumption. Here, based on single-cell RNA-seq, we characterized genome-wide AS events in manifold chicken male germ cells: embryonic stem cells (ESCs), gonad primordial germ cells (gPGCs), and spermatogonia stem cells (SSCs). A total of 38,494 AS events from 15,338 genes were detected in ESCs, with a total of 48,955 events from 14,783 genes and 49,900 events from 15,089 genes observed in gPGCs and SSCs, respectively. Moreover, this distribution of AS events suggests the diverse splicing feature of ESCs, gPGCs, and SSCs. Finally, several crucial stage-specific genes, such as NANOG, POU5F3, LIN28B, BMP4, STRA8, and LHX9, were identified in AS events that were transmitted in ESCs, gPGCs, and SSCs. The gene expression results of the RNA-seq data were validated by qRT-PCR. In summary, we provided a comprehensive atlas of the genome-wide scale of the AS event landscape in male chicken germ-line cells and presented its distribution for the first time. This research may someday improve treatment options for men suffering from male infertility.

18.
Sci Rep ; 11(1): 237, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420265

RESUMO

To identify risk factors and develop a simple model to predict early prognosis of acute paraquat (PQ) poisoning patients, we performed a retrospective cohort study of acute PQ poisoning patients (n = 1199). Patients (n = 913) with PQ poisoning from 2011 to 2018 were randomly divided into training (n = 609) and test (n = 304) samples. Another two independent cohorts were used as validation samples for a different time (n = 207) and site (n = 79). Risk factors were identified using a logistic model with Markov Chain Monte Carlo (MCMC) simulation and further evaluated using a latent class analysis. The prediction score was developed based on the training sample and was evaluated using the testing and validation samples. Eight factors, including age, ingestion volume, creatine kinase-MB [CK-MB], platelet [PLT], white blood cell [WBC], neutrophil counts [N], gamma-glutamyl transferase [GGT], and serum creatinine [Cr] were identified as independent risk indicators of in-hospital death events. The risk model had C statistics of 0.895 (95% CI 0.855-0.928), 0.891 (95% CI 0.848-0.932), and 0.829 (95% CI 0.455-1.000), and predictive ranges of 4.6-98.2%, 2.3-94.9%, and 0-12.5% for the test, validation_time, and validation_site samples, respectively. In the training sample, the risk model classified 18.4%, 59.9%, and 21.7% of patients into the high-, average-, and low-risk groups, with corresponding probabilities of 0.985, 0.365, and 0.03 for in-hospital death events. We developed and evaluated a simple risk model to predict the prognosis of patients with acute PQ poisoning. This risk scoring system could be helpful for identifying high-risk patients and reducing mortality due to PQ poisoning.


Assuntos
Modelos Estatísticos , Paraquat/intoxicação , Estudos de Coortes , Feminino , Humanos , Masculino , Cadeias de Markov , Mortalidade , Prognóstico , Estudos Retrospectivos , Medição de Risco
19.
Mech Dev ; 164: 103636, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32798699

RESUMO

MicroRNAs play a crucial role in sperm formation, but its specific function remains unknown. Here, we found that gga-miR-218 regulates chicken sperm formation through in/ex vivo experiments. We constructed over-expression/interference carrier to overexpress and inhibit gga-miR-218 in chicken spermatogonial stem cells, separately, the detection of haploid and QRT-PCR of meiosis related genes revealed that gga-miR-218 inhibits meiosis. After injection of miR-218 in vivo, semen concentration and HE (Hematoxylin and Eosin staining) revealed that gga-miR-218 inhibits meiosis. Meanwhile, we discovered that gga-miR-218 could target Stra8 by prediction software which can inhibit the wild-type fluorescence activity by co-transfection of gga-miR-218 with the Stra8 3' untranslated regions fluorescent reporter vector (wild-type/mutant), QRT-PCR and Western blot showed that gga-miR-218 inhibits the expression level of Stra8 by targeting its 3' untranslated regions directly. Finally, we suggest that gga-miR-218 could target to srta8 directly and inhibit spermatogenesis.


Assuntos
Galinhas/genética , Meiose , MicroRNAs/genética , Espermatogênese , Células-Tronco/citologia , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Aviárias/genética , Expressão Gênica
20.
Environ Toxicol Pharmacol ; 80: 103456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32673753

RESUMO

This study explores the efficacy and mechanism by which octreotide (OCT) alleviates paraquat (PQ)-induced pancreatic injury. Twenty-four adult male rats were randomly divided into three groups: the normal control (NC), PQ poisoning, and OCT treatment groups. The PQ-induced pancreatic injury rat model was established by administering PQ (120 mg/kg). Treatment group rats received OCT (8 µg/kg body weight) every 8 h by subcutaneous injection, 1 h after PQ administration. Rats were euthanized 24 h after PQ injection. Serum amylase, lipase, tumor necrosis factor-α, and interleukin-6 levels were markedly increased in the PQ group versus the NC group. In pancreatic tissue, PQ poisoning drastically induced necrosis and increased inflammatory cytokine and oxidative stress marker levels. Compared with the PQ group, OCT reduced pancreatic damage and histological scores, serum amylase, lipase, and inflammatory cytokine levels, as well as oxidative stress. OCT demonstrates protective effects against PQ-induced pancreatic damage through anti-inflammatory and antioxidant actions.


Assuntos
Octreotida/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Paraquat/intoxicação , Fator de Transcrição RelA/antagonistas & inibidores , Amilases/sangue , Animais , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Inflamação , Interleucina-6/genética , Lipase/sangue , Masculino , Estresse Oxidativo/imunologia , Pâncreas/imunologia , Pâncreas/patologia , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA