Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 10: 917269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875011

RESUMO

Objectives: This study aimed to provide an assessment of chlorothalonil's possible carcinogenic risk posed to the public. In combination and comparison with the non-carcinogenic risk, the results hopefully could provide useful insights, early warning, and references for policy formulation. Methods: This study firstly investigated the occurrence of chlorothalonil on selected key vegetables for different scenarios, and then conducted an exposure assessment with officially published data. Lastly, both the non-carcinogenic and carcinogenic risk of chlorothalonil were calculated by using Monte-Carlo simulation. Results: Even though mean non-carcinogenic risks of chlorothalonil for all scenarios were below threshold value, the mean carcinogenic risks for maximum-risk scenario and most-likely risk scenario were mostly above threshold value. High probabilities of exceedance of threshold value existed for carcinogenic risk under all scenarios. Conclusion: Potential threat to public health existed for conventionally 'safe' pesticide if considering the possible carcinogenicity. Extra caution should be taken and the potential carcinogenic effects should be included into consideration for better protection of public health during the policy formulation process.


Assuntos
Carcinógenos , Verduras , Humanos , Nitrilas , Probabilidade , Medição de Risco
2.
Chemistry ; 28(2): e202103268, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34791731

RESUMO

In this work, by using two kinds of viologen ligands three POM-based Compounds were obtained under hydrothermal conditions, namely [AgI (bmypd)0.5 (ß-Mo8 O26 )0.5 ] (1) (bmypd ⋅ 2Cl=1,1'-[Biphenyl-4,4'-bis(methylene)]bis(4,4'-bipyridyinium)dichloride), [AgI 2 (bypy)4 (HSiW12 O40 )2 ] ⋅ 14H2 O (2) and [AgI (bypy)(γ-Mo8 O26 )0.5 ] (3) (bypy⋅Cl=1-Benzyl-4,4'-bipyridyinium chloride). The structures were characterized by Fourier transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single crystal X-ray diffraction. Compounds 1-3 show excellent photochromic ability with fast photoresponse under the irradiation of ultraviolet light with different degrees of color changes. So compounds 1-3 can be used as visible ultraviolet detectors. Compounds 1-3 also possess photoluminescence properties with fast and excellent fluorescence quenching effect. Compounds 1-3 also can be used as inkless and erasable printing materials with suspensions of 1-3 applied to filter paper. Compounds 1-3 can also produce color changes in amine vapor environment, especially in an NH3 atmosphere. Compounds 1-3 can be used as organic amine detectors.

3.
Sci Total Environ ; 541: 1-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386910

RESUMO

Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527).


Assuntos
Colífagos/fisiologia , Substâncias Húmicas , Luz Solar , Inativação de Vírus , Cinética , Rios/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA