Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Clin Med ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731089

RESUMO

Background: Incorporating GD2-targeting monoclonal antibody into post-consolidation maintenance therapy has improved survival for children with high-risk neuroblastoma. However, ~50% of patients do not respond to, or relapse following, initial treatment. Here, we evaluated additional anti-GD2-based immunotherapy to better treat high-risk neuroblastoma in mice to develop a regimen for patients with therapy-resistant neuroblastoma. Methods: We determined the components of a combined regimen needed to cure mice of established MYCN-amplified, GD2-expressing, murine 9464D-GD2 neuroblastomas. Results: First, we demonstrate that 9464D-GD2 is nonresponsive to a preferred salvage regimen: anti-GD2 with temozolomide and irinotecan. Second, we have previously shown that adding agonist anti-CD40 mAb and CpG to a regimen of radiotherapy, anti-GD2/IL2 immunocytokine and anti-CTLA-4, cured a substantial fraction of mice bearing small 9464D-GD2 tumors; here, we further characterize this regimen by showing that radiotherapy and hu14.18-IL2 are necessary components, while anti-CTLA-4, anti-CD40, or CpG can individually be removed, and CpG and anti-CTLA-4 can be removed together, while maintaining efficacy. Conclusions: We have developed and characterized a regimen that can cure mice of a high-risk neuroblastoma that is refractory to the current clinical regimen for relapsed/refractory disease. Ongoing preclinical work is directed towards ways to potentially translate these findings to a regimen appropriate for clinical testing.

2.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
3.
JAMIA Open ; 6(4): ooad092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942470

RESUMO

Objectives: Substance misuse is a complex and heterogeneous set of conditions associated with high mortality and regional/demographic variations. Existing data systems are siloed and have been ineffective in curtailing the substance misuse epidemic. Therefore, we aimed to build a novel informatics platform, the Substance Misuse Data Commons (SMDC), by integrating multiple data modalities to provide a unified record of information crucial to improving outcomes in substance misuse patients. Materials and Methods: The SMDC was created by linking electronic health record (EHR) data from adult cases of substance (alcohol, opioid, nonopioid drug) misuse at the University of Wisconsin hospitals to socioeconomic and state agency data. To ensure private and secure data exchange, Privacy-Preserving Record Linkage (PPRL) and Honest Broker services were utilized. The overlap in mortality reporting among the EHR, state Vital Statistics, and a commercial national data source was assessed. Results: The SMDC included data from 36 522 patients experiencing 62 594 healthcare encounters. Over half of patients were linked to the statewide ambulance database and prescription drug monitoring program. Chronic diseases accounted for most underlying causes of death, while drug-related overdoses constituted 8%. Our analysis of mortality revealed a 49.1% overlap across the 3 data sources. Nonoverlapping deaths were associated with poor socioeconomic indicators. Discussion: Through PPRL, the SMDC enabled the longitudinal integration of multimodal data. Combining death data from local, state, and national sources enhanced mortality tracking and exposed disparities. Conclusion: The SMDC provides a comprehensive resource for clinical providers and policymakers to inform interventions targeting substance misuse-related hospitalizations, overdoses, and death.

4.
Neurooncol Adv ; 5(1): vdad066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324218

RESUMO

Background: Although the epidermal growth factor receptor (EGFR) is a frequent oncogenic driver in glioblastoma (GBM), efforts to therapeutically target this protein have been largely unsuccessful. The present preclinical study evaluated the novel EGFR inhibitor WSD-0922. Methods: We employed flank and orthotopic patient-derived xenograft models to characterize WSD-0922 and compare its efficacy to erlotinib, a potent EGFR inhibitor that failed to provide benefit for GBM patients. We performed long-term survival studies and collected short-term tumor, plasma, and whole-brain samples from mice treated with each drug. We utilized mass spectrometry to measure drug concentrations and spatial distribution and to assess the impact of each drug on receptor activity and cellular signaling networks. Results: WSD-0922 inhibited EGFR signaling as effectively as erlotinib in in vitro and in vivo models. While WSD-0922 was more CNS penetrant than erlotinib in terms of total concentration, comparable concentrations of both drugs were measured at the tumor site in orthotopic models, and the concentration of free WSD-0922 in the brain was significantly less than the concentration of free erlotinib. WSD-0922 treatment provided a clear survival advantage compared to erlotinib in the GBM39 model, with marked suppression of tumor growth and most mice surviving until the end of the study. WSD-0922 treatment preferentially inhibited phosphorylation of several proteins, including those associated with EGFR inhibitor resistance and cell metabolism. Conclusions: WSD-0922 is a highly potent inhibitor of EGFR in GBM, and warrants further evaluation in clinical studies.

5.
Cancer Cell ; 41(4): 660-677.e7, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001527

RESUMO

Pediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources. Herein, we establish a single-site collection of 261 cell lines, including 224 pediatric cell lines representing 18 distinct extracranial and brain childhood tumor types. We subjected 182 cell lines to multi-omics analyses (DNA sequencing, RNA sequencing, DNA methylation), and in parallel performed pharmacological and genetic CRISPR-Cas9 loss-of-function screens to identify pediatric-specific treatment opportunities and biomarkers. Our work provides insight into specific pathway vulnerabilities in molecularly defined pediatric tumor classes and uncovers biomarker-linked therapeutic opportunities of clinical relevance. Cell line data and resources are provided in an open access portal.


Assuntos
Neoplasias Encefálicas , Criança , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
6.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639155

RESUMO

BACKGROUND: The antitumor effects of external beam radiation therapy (EBRT) are mediated, in part, by an immune response. We have reported that a single fraction of 12 Gy EBRT combined with intratumoral anti-GD2 hu14.18-IL2 immunocytokine (IC) generates an effective in situ vaccine (ISV) against GD2-positive murine tumors. This ISV is effective in eradicating single tumors with sustained immune memory; however, it does not generate an adequate abscopal response against macroscopic distant tumors. Given the immune-stimulatory capacity of radiation therapy (RT), we hypothesized that delivering RT to all sites of disease would augment systemic antitumor responses to ISV. METHODS: We used a syngeneic B78 murine melanoma model consisting of a 'primary' flank tumor and a contralateral smaller 'secondary' flank tumor, treated with 12 Gy EBRT and intratumoral IC immunotherapy to the primary and additional EBRT to the secondary tumor. As a means of delivering RT to all sites of disease, both known and occult, we also used a novel alkylphosphocholine analog, NM600, conjugated to 90Y as a targeted radionuclide therapy (TRT). Tumor growth, overall survival, and cause of death were measured. Flow cytometry was used to evaluate immune population changes in both tumors. RESULTS: Abscopal effects of local ISV were amplified by delivering as little as 2-6 Gy of EBRT to the secondary tumor. When the primary tumor ISV regimen was delivered in mice receiving 12 Gy EBRT to the secondary tumor, we observed improved overall survival and more disease-free mice with immune memory compared with either ISV or 12 Gy EBRT alone. Similarly, TRT combined with ISV resulted in improved overall survival and a trend towards reduced tumor growth rates when compared with either treatment alone. Using flow cytometry, we identified an influx of CD8+ T cells with a less exhausted phenotype in both the ISV-targeted primary and the distant secondary tumor following the combination of secondary tumor EBRT or TRT with primary tumor ISV. CONCLUSIONS: We report a novel use for low-dose RT, not as a direct antitumor modality but as an immunomodulator capable of driving and expanding antitumor immunity against metastatic tumor sites following ISV.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos , Animais , Imunoterapia/métodos , Memória Imunológica , Vacinação
7.
Mol Cell ; 82(1): 123-139.e7, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34910943

RESUMO

Mediator kinases (CDK8/19) are transcriptional regulators broadly implicated in cancer. Despite their central role in fine-tuning gene-expression programs, we find complete loss of CDK8/19 is tolerated in colorectal cancer (CRC) cells. Using orthogonal functional genomic and pharmacological screens, we identify BET protein inhibition as a distinct vulnerability in CDK8/19-depleted cells. Combined CDK8/19 and BET inhibition led to synergistic growth retardation in human and mouse models of CRC. Strikingly, depletion of CDK8/19 in these cells led to global repression of RNA polymerase II (Pol II) promoter occupancy and transcription. Concurrently, loss of Mediator kinase led to a profound increase in MED12 and BRD4 co-occupancy at enhancer elements and increased dependence on BET proteins for the transcriptional output of cell-essential genes. In total, this work demonstrates a synthetic lethal interaction between Mediator kinase and BET proteins and exposes a therapeutic vulnerability that can be targeted using combination therapies.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/enzimologia , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Elementos Facilitadores Genéticos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Complexo Mediador/antagonistas & inibidores , Complexo Mediador/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Inibidores de Proteínas Quinases/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680294

RESUMO

Atypical teratoid rhabdoid tumour (ATRT) is a rare but highly aggressive undifferentiated solid tumour arising in the central nervous system and predominantly affecting infants and young children. ATRT is exclusively characterized by the inactivation of SMARCB1, a member of the SWI/SNF chromatin remodelling complex that is essential for the regulation of large sets of genes required for normal development and differentiation. Histone deacetylase inhibitors (HDACi) are a promising anticancer therapy and are able to mimic the normal acetylation functions of SMARCB1 in SMARCB1-deficient cells and drive multilineage differentiation in extracranial rhabdoid tumours. However, the potential efficacy of HDACi in ATRT is unknown. Here, we show that human ATRT cells are highly responsive to the HDACi panobinostat and that sustained treatment leads to growth arrest, increased cell senescence, decreased clonogenicity and induction of a neurogenesis gene-expression profile. Furthermore, in an orthotopic ATRT xenograft model, continuous panobinostat treatment inhibits tumour growth, increases survival and drives neuronal differentiation as shown by the expression of the neuronal marker, TUJ1. Collectively, this preclinical study supports the therapeutic potential of panobinostat-mediated differentiation therapy for ATRT.

9.
Neuron ; 109(19): 3036-3040, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559982

RESUMO

The Learning Salon is an online weekly forum for discussing points of contention and common ground in biological and artificial learning. Hosting neuroscientists, computer scientists, AI researchers, and philosophers, the Salon promotes short talks and long discussions, committed to an ethos of participation, horizontality, and inclusion.


Assuntos
Neurociências/tendências , Comunicação por Videoconferência/tendências , Comunicação , Congressos como Assunto/história , Congressos como Assunto/tendências , Diversidade Cultural , História do Século XVII , História do Século XVIII , Comunicação Interdisciplinar
10.
Sci Adv ; 7(21)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34138730

RESUMO

Aberrant activation of Wnt/ß-catenin pathway is a key driver of colorectal cancer (CRC) growth and of great therapeutic importance. In this study, we performed comprehensive CRISPR screens to interrogate the regulatory network of Wnt/ß-catenin signaling in CRC cells. We found marked discrepancies between the artificial TOP reporter activity and ß-catenin-mediated endogenous transcription and redundant roles of T cell factor/lymphoid enhancer factor transcription factors in transducing ß-catenin signaling. Compiled functional genomic screens and network analysis revealed unique epigenetic regulators of ß-catenin transcriptional output, including the histone lysine methyltransferase 2A oncoprotein (KMT2A/Mll1). Using an integrative epigenomic and transcriptional profiling approach, we show that KMT2A loss diminishes the binding of ß-catenin to consensus DNA motifs and the transcription of ß-catenin targets in CRC. These results suggest that KMT2A may be a promising target for CRCs and highlight the broader potential for exploiting epigenetic modulation as a therapeutic strategy for ß-catenin-driven malignancies.


Assuntos
Neoplasias Colorretais , beta Catenina , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
11.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33858849

RESUMO

An important component of research using animal models is ensuring rigor and reproducibility. This study was prompted after two experimenters performing virtually identical studies obtained different results when syngeneic B78 murine melanoma cells were implanted into the skin overlying the flank and treated with an in situ vaccine (ISV) immunotherapy. Although both experimenters thought they were using identical technique, we determined that one was implanting the tumors intradermally (ID) and the other was implanting them subcutaneously (SC). Though the baseline in vivo immunogenicity of tumors can depend on depth of their implantation, the response to immunotherapy as a function of tumor depth, particularly in immunologically 'cold' tumors, has not been well studied. The goal of this study was to evaluate the difference in growth kinetics and response to immunotherapy between identically sized melanoma tumors following ID versus SC implantation. We injected C57BL/6 mice with syngeneic B78 melanoma cells either ID or SC in the flank. When tumors reached 190-230 mm3, they were grouped into a 'wave' and treated with our previously published ISV regimen (12 Gy local external beam radiation and intratumoral hu14.18-IL2 immunocytokine). Physical examination demonstrated that ID-implanted tumors were mobile on palpation, while SC-implanted tumors became fixed to the underlying fascia. Histologic examination identified a critical fascial layer, the panniculus carnosus, which separated ID and SC tumors. SC tumors reached the target tumor volume significantly faster compared with ID tumors. Most ID tumors exhibited either partial or complete response to this immunotherapy, whereas most SC tumors did not. Further, the 'mobile' or 'fixed' phenotype of tumors predicted response to therapy, regardless of intended implantation depth. These findings were then extended to additional immunotherapy regimens in four separate tumor models. These data indicate that the physical 'fixed' versus 'mobile' characterization of the tumors may be one simple method of ensuring homogeneity among implanted tumors prior to initiation of treatment. Overall, this short report demonstrates that small differences in depth of tumor implantation can translate to differences in response to immunotherapy, and proposes a simple physical examination technique to ensure consistent tumor depth when conducting implantable tumor immunotherapy experiments.


Assuntos
Anticorpos/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Imunoterapia , Interleucina-2/administração & dosagem , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Animais , Anticorpos/imunologia , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Feminino , Gangliosídeos/imunologia , Injeções Intralesionais , Interleucina-2/imunologia , Cinética , Melanoma/genética , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/imunologia , Neoplasias de Tecidos Moles/patologia , Transplante Isogênico , Carga Tumoral/efeitos dos fármacos , Vacinação
12.
Sci Rep ; 11(1): 7482, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33820942

RESUMO

Real-time seizure detection is a resource intensive process as it requires continuous monitoring of patients on stereoelectroencephalography. This study improves real-time seizure detection in drug resistant epilepsy (DRE) patients by developing patient-specific deep learning models that utilize a novel self-supervised dynamic thresholding approach. Deep neural networks were constructed on over 2000 h of high-resolution, multichannel SEEG and video recordings from 14 DRE patients. Consensus labels from a panel of epileptologists were used to evaluate model efficacy. Self-supervised dynamic thresholding exhibited improvements in positive predictive value (PPV; difference: 39.0%; 95% CI 4.5-73.5%; Wilcoxon-Mann-Whitney test; N = 14; p = 0.03) with similar sensitivity (difference: 14.3%; 95% CI - 21.7 to 50.3%; Wilcoxon-Mann-Whitney test; N = 14; p = 0.42) compared to static thresholds. In some models, training on as little as 10 min of SEEG data yielded robust detection. Cross-testing experiments reduced PPV (difference: 56.5%; 95% CI 25.8-87.3%; Wilcoxon-Mann-Whitney test; N = 14; p = 0.002), while multimodal detection significantly improved sensitivity (difference: 25.0%; 95% CI 0.2-49.9%; Wilcoxon-Mann-Whitney test; N = 14; p < 0.05). Self-supervised dynamic thresholding improved the efficacy of real-time seizure predictions. Multimodal models demonstrated potential to improve detection. These findings are promising for future deployment in epilepsy monitoring units to enable real-time seizure detection without annotated data and only minimal training time in individual patients.


Assuntos
Eletroencefalografia , Convulsões/diagnóstico por imagem , Técnicas Estereotáxicas , Gravação em Vídeo , Algoritmos , Fenômenos Eletrofisiológicos , Feminino , Humanos , Masculino , Imagem Multimodal , Redes Neurais de Computação , Convulsões/fisiopatologia , Adulto Jovem
13.
Methods Mol Biol ; 1357: 231-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25646603

RESUMO

The mitochondrial genome resides in the mitochondrion of nearly all mammalian cells. It is important for energy production as it encodes 13 of the key subunits of the electron transfer chain, which generates the vast majority of cellular ATP through the process of oxidative phosphorylation. As cells establish pluripotency, they regulate their mtDNA copy number so that they possess few copies but sufficient that they can be replicated to match the differentiated cell-specific requirements for ATP derived through oxidative phosphorylation. However, the failure to strictly regulate this process prevents pluripotent cells from differentiating. We describe a series of protocols that analyze mtDNA copy number, DNA methylation within the nuclear-encoded mtDNA-specific polymerase, and gene expression of the other factors that drive replication of the mitochondrial genome. We demonstrate how to measure ATP-generating capacity through oxygen respiratory capacity and total cellular ATP and lactate levels. Finally, we also describe how to detect mtDNA variants in pluripotent and differentiating cells using next-generation sequencing protocols and how the variants can be confirmed by high-resolution melt analysis.


Assuntos
Replicação do DNA , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/citologia , Trifosfato de Adenosina/biossíntese , Células Cultivadas , Reprogramação Celular/genética , Variações do Número de Cópias de DNA , Metilação de DNA , DNA Polimerase Dirigida por DNA/fisiologia , Expressão Gênica , Biblioteca Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microesferas , Desnaturação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Consumo de Oxigênio , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA