Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 13(19): 5674-5679, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694329

RESUMO

It is a long-standing goal to fabricate conductive molecular nanowires (NWs) on semiconductor surfaces. Anchoring molecules to pre-patterned surface nanostructures is a practical approach to construct molecular NWs on semiconductor surfaces. Previously, well-ordered inorganic Ge NWs were deduced to spontaneously grow onto Pt/Ge(001) surfaces after annealing at an elevated temperature. In this work, we further demonstrate that organic 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecular NWs can self-assemble onto the atomic NWs on Pt/Ge(001) surfaces. The outer nitrogen atoms in TCNQ molecules hybridize with under-coordinated Ge atoms in Ge NWs with an energy release of ∼1.14 eV per molecule, and electrons transfer from Ge NWs to the frontier orbitals of anchored TCNQs resulting in a negatively charged state. This largely tailors the electronic configurations of TCNQs and Pt/Ge(001) surfaces, enhancing the electron transport along the dimer row direction. The TCNQ molecular NWs coupled with the Ge NWs represent an exemplary showcase for the fabrication of molecular NWs on semiconductor surfaces.

2.
J Phys Chem Lett ; 13(4): 1063-1068, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075909

RESUMO

The manipulation of conductive nanowires (NWs) on semiconductor platforms provides important insights into the fabrication of nanoscale electronic devices. In this work, we directly observed the electric field-induced phase transitions in atomic Au-NWs self-assembled on Ge(001) surfaces using scanning tunneling microscopy (STM). The tunneling electrons and electric fields underneath a STM tip apex can effectively trigger a phase transition in Au-NWs on Ge(001) surfaces. Such phase transitions are associated with a remarkable atomic rearrangement in the Au-NWs, thereby modifying their band structures. Moreover, directly monitoring the dynamic reconstruction of Au-NWs on Ge(001) surfaces helps us to understand the NWs' intricate atomic configurations and their electronic properties. The spatially controlled phase transition at the nanometer scale using STM shows the possibility of modulating NWs' properties at an atomic scale.

3.
ACS Appl Mater Interfaces ; 12(2): 2548-2554, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31850736

RESUMO

Bimetallic Ni-Cu catalysts feature high activity in CO2 hydrogenation. However, the primary surface intermediates during reaction are still elusive, making the understanding of the reaction mechanism inadequate. Herein, taking advantage of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), we focused on the mechanistic exploration of CO2 hydrogenation on the Ni/Cu(100) model catalyst under millibar pressures. We show that CO2 dissociates into CO and atomic oxygen on the Ni/Cu(100) surface and gives rise to the formation of chemisorbed O and nickel oxide (NiO). The CO3* species is formed through the reaction of CO2 with surface oxygen during CO2 activation. With the presence of H2, the conversion of adsorbed CO3* into the formate intermediate, HCOO*, is unambiguously demonstrated by the C 1s and O 1s core-level spectra as well as ultraviolet photoelectron spectroscopy. Based on these observations, we conclude that the CO2 hydrogenation route via CO2 dissociation, the formation of CO3*, the conversion of CO3* to formate, and the ensuing hydrogenation of formate to methanol on the Ni-Cu catalyst are feasible.

4.
Chemistry ; 24(60): 16097-16103, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30088685

RESUMO

The in operando monitoring of catalytic intermediates is crucial for understanding the reaction mechanism and for optimizing the reaction conditions to improve the efficiency of the catalytic protocol; however, until now, this has remained a daunting challenge. Herein, we investigated the interaction of CO2 and H2 with the Cu(111) surface in a CO2 hydrogenation model system by using the in operando technique of near-ambient pressure X-ray photoelectron spectroscopy, which is further assisted by ultraviolet photoemission spectroscopy and low-energy electron diffraction (LEED) measurements. These techniques allowed the direct observation of CO2 dissociation into CO+O on the Cu(111) surface and the adsorption of O on the surface at room temperature. The intermediate HCOO- was unambiguously detected in the CO2 +H2 environment, which corroborated the formate pathway for methanol formation on the Cu(111) surface. We further found that O coverage can prevent the build up of graphitic carbon on the Cu surface. By taking advantage of the competitive interplay between Cu-O and graphitic carbon, we have proposed a feasible strategy for inhibition of the formation of graphitic carbon by tuning the CO2 and H2 partial pressures, which may contribute to sustaining the active Cu catalyst under the reaction conditions.

5.
Nat Commun ; 8(1): 581, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28924155

RESUMO

Facet engineering of oxide nanocrystals represents a powerful method for generating diverse properties for practical and innovative applications. Therefore, it is crucial to determine the nature of the exposed facets of oxides in order to develop the facet/morphology-property relationships and rationally design nanostructures with desired properties. Despite the extensive applications of electron microscopy for visualizing the facet structure of nanocrystals, the volumes sampled by such techniques are very small and may not be representative of the whole sample. Here, we develop a convenient 17O nuclear magnetic resonance (NMR) strategy to distinguish oxide nanocrystals exposing different facets. In combination with density functional theory calculations, we show that the oxygen ions on the exposed (001) and (101) facets of anatase titania nanocrystals have distinct 17O NMR shifts, which are sensitive to surface reconstruction and the nature of the steps on the surface. The results presented here open up methods for characterizing faceted nanocrystalline oxides and related materials.The exposed facets of oxide nanocrystals are key to their properties. Here, the authors use 17O solid-state NMR spectroscopy to discriminate between oxygen species on different facets of anatase titania nanocrystals, providing compelling evidence for the value of NMR spectroscopy in characterizing faceted oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA