Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Adv Sci (Weinh) ; : e2402465, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728587

RESUMO

Aggressive nature of colon cancer and current imprecise therapeutic scenarios simulate the development of precise and effective treatment strategies. To achieve this, a tumor environment-activated photosensitized biomimetic nanoplatform (PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM) is fabricated by encapsulating metal-organic framework loaded with developed photosensitizer PEG2000-SiNcTI-Ph and immunoadjuvant CpG oligodeoxynucleotide within fusion cell membrane expressing programmed death protein 1 (PD-1) and cluster of differentiation 47 (CD47). By stumbling across, systematic evaluation, and deciphering with quantum chemical calculations, a unique attribute of tumor environment (low pH plus high concentrations of adenosine 5'-triphosphate (ATP))-activated photodynamic effect sensitized by long-wavelength photons is validated for PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM, advancing the precision of cancer therapy. Moreover, PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM evades immune surveillance to target CT26 colon tumors in mice mediated by CD47/signal regulatory proteins α (SIRPα) interaction and PD-1/programmed death ligand 1 (PD-L1) interaction, respectively. Tumor environment-activated photodynamic therapy realized by PEG2000-SiNcTI-Ph/CpG-ZIF-8@CM induces immunogenic cell death (ICD) to elicit anti-tumor immune response, which is empowered by enhanced dendritic cells (DC) uptake of CpG and PD-L1 blockade contributed by the nanoplatform. The photodynamic immunotherapy efficiently combats primary and distant CT26 tumors, and additionally generates immune memory to inhibit tumor recurrence and metastasis. The nanoplatform developed here provides insights for the development of precise cancer therapeutic strategies.

2.
Front Endocrinol (Lausanne) ; 15: 1362584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774228

RESUMO

Background: Previous observational studies have demonstrated a link between diabetes mellitus(DM) and primary biliary cholangitis (PBC). Nevertheless, since these relationships might be confused, whether there is any causal connection or in which direction it exists is unclear. Our investigation aimed to identify the causal associations between DM and PBC. Methods: We acquired genome-wide association study (GWAS) datasets for PBC, Type 1 diabetes(T1DM), and Type 2 diabetes(T2DM) from published GWASs. Inverse variance-weighted (IVW), MR-Egger, weighted median (WM), Simple mode, and weighted mode methods were used to determine the causal relationships between DM(T1DM or T2DM) and PBC. Sensitivity analyses were also carried out to ensure the results were robust. To determine the causal relationship between PBC and DM(T1DM or T2DM), we also used reverse MR analysis. Results: T1DM was associated with a higher risk of PBC (OR 1.1525; 95% CI 1.0612-1.2517; p = 0.0007) in the IVW method, but no evidence of a causal effect T2DM on PBC was found (OR 0.9905; 95% CI 0.8446-1.1616; p = 0.9071) in IVW. Results of the reverse MR analysis suggested genetic susceptibility that PBC was associated with an increased risk of T1DM (IVW: OR 1.1991; 95% CI 1.12-1.2838; p = 1.81E-07), but no evidence of a causal effect PBC on T2DM was found (IVW: OR 1.0101; 95% CI 0.9892-1.0315; p = 0.3420). Conclusion: The current study indicated that T1DM increased the risk of developing PBC and vice versa. There was no proof of a causal connection between PBC probability and T2DM. Our results require confirmation through additional replication in larger populations.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Cirrose Hepática Biliar , Análise da Randomização Mendeliana , Humanos , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/epidemiologia , Cirrose Hepática Biliar/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/epidemiologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Risco
3.
J Robot Surg ; 18(1): 219, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771389

RESUMO

An experimental validation of a robotic system for radioactive iodine-125 seed implantation (RISI) in tumor treatment was conducted using customized phantom models and animal models simulating liver and lung lesions. The robotic system, consisting of planning, navigation, and implantation modules, was employed to implant dummy radioactive seeds into the models. Fiducial markers were used for target localization. In phantom experiments across 40 cases, the mean errors between planned and actual seed positions were 0.98 ± 1.05 mm, 1.14 ± 0.62 mm, and 0.90 ± 1.05 mm in the x, y, and z directions, respectively. The x, y, and z directions correspond to the left-right, anterior-posterior, and superior-inferior anatomical planes. Silicone phantoms exhibiting significantly smaller x-axis errors compared to liver and lung phantoms (p < 0.05). Template assistance significantly reduced errors in all axes (p < 0.05). No significant dosimetric deviations were observed in parameters such as D90, V100, and V150 between plans and post-implant doses (p > 0.05). In animal experiments across 23 liver and lung cases, the mean implantation errors were 1.28 ± 0.77 mm, 1.66 ± 0.69 mm, and 1.86 ± 0.93 mm in the x, y, and z directions, slightly higher than in phantoms (p < 0.05), with no significant differences between liver and lung models. The dosimetric results closely matched planned values, confirming the accuracy of the robotic system for RISI, offering new possibilities in clinical tumor treatment.


Assuntos
Radioisótopos do Iodo , Neoplasias Pulmonares , Imagens de Fantasmas , Procedimentos Cirúrgicos Robóticos , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/instrumentação , Radioisótopos do Iodo/uso terapêutico , Animais , Neoplasias Pulmonares/radioterapia , Braquiterapia/métodos , Braquiterapia/instrumentação , Neoplasias Hepáticas/radioterapia , Humanos , Marcadores Fiduciais
4.
J Mol Cell Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714348

RESUMO

Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogeneous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.

5.
Angew Chem Int Ed Engl ; : e202404142, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715431

RESUMO

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.

6.
Int J Rheum Dis ; 27(4): e15121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562078

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are widely recognized in the pathogenesis of autoimmune disease. As a key regulatory factor, miRNAs have introduced new biomarkers for the early diagnosis of rheumatoid arthritis (RA) and provided a favorable research direction for the development of novel therapeutic targets. This study aimed to explore the hotspots of miRNA research related to RA published from different countries, organizations, and authors. METHODS: From 2001 to 2022, publications on miRNA related to RA were identified in the Web of Science database. The total and annual number of publishments, citations, impact factor, H-index, productive authors, and involved journals were collected for quantitative and qualitative comparisons. RESULTS: A total of 29 countries/regions in the world have participated in the research of miRNAs and RA over the past two decades, and China (760, 53.18%) and the United States (233, 16.31%) account for the majority of the total publications. China dominated in total citation (17881) and H-index (62). A total of 507 academic journals have published articles in related fields, and Frontiers in Immunology published the most (53, 3.71%). Chih-hsin Tang of the China Medical University has published the most papers (16, 1.2%). Stanczyk (2008) published the most cited article Altered expression of miRNAs in synovial fibroblasts and synovial tissue in rheumatoid arthritis in Arthritis and Rheumatism, with 660 citations. Inflammation is the high-frequency keyword outside of RA and miRNAs, and related researches have mainly focused on miR-146a and miR-155. CONCLUSIONS: In the past two decades, extensive and continuous research has been conducted to investigate the role of miRNAs in RA, and miRNAs are widely recognized in the pathogenesis of RA. Related research has mainly focused on miR-146a and miR-155 that have shown promising results as key factors in RA experimental models. Focusing on clinical applications and translational research may be the future research direction and hotspot based on molecular biology basic research and mechanism exploration.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , MicroRNAs , Humanos , MicroRNAs/genética , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Bibliometria , Inflamação
7.
Cancer Pathog Ther ; 2(2): 121-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601481

RESUMO

Background: Colon cancer is one of the most prevalent digestive cancers worldwide. Results of epidemiological, experimental, and clinical studies suggest that aspirin inhibits the development of colon cancer. This study aimed to systematically elucidate the molecular mechanisms by which aspirin prevents colon carcinogenesis. Methods: We determined the global protein expression profiles of colorectal cancer and aspirin-treated cells using quantitative proteomic analysis. We analyzed the proteomic results using bioinformatics (including differential proteins, protein annotation, Kyoto Encyclopedia of Genes and Genomes [KEGG] pathways, and protein-protein interaction [PPI] network). The viability of the colon cancer cell line and HT29 â€‹cells treated with aspirin was determined using the cell counting kit-8 assay. The differentially expressed proteins, such as p53 and cyclin-dependent kinase 1 (CDK1), were quantified using real-time polymerase chain reaction (PCR) and Western blotting. We measured cell cycle distribution and apoptosis in HT29 â€‹cells exposed to aspirin using fluorescence-activated cell sorting (FACS). Results: We found that 552 proteins were significantly dysregulated, of which 208 and 334 were upregulated and downregulated, respectively, in colon cancer cells exposed to 10 â€‹mmol/L of aspirin (95% confidence interval [CI]: -1.269 to -0.106, P â€‹< â€‹0.05). Further gene enrichment analysis revealed that cell cycle-related proteins, such as p53 and CDK1, were significantly differentially expressed. Proteomic analysis showed that after 24 â€‹h of aspirin exposure, the level of p53 increased by 2.52-fold and CDK1 was downregulated to half that of the controls in HT29 â€‹cells (95% CI: -0.619 to -0.364, P â€‹< â€‹0.05). Real-time PCR and Western blotting results showed that p53 was upregulated (95%CI: -3.088 to -1.912, P â€‹< â€‹0.001) and CDK1 was significantly downregulated after aspirin exposure in colon cancer cells (95% CI: 0.576 to 1.045, P â€‹< â€‹0.05). We observed that aspirin promoted G1/S cell cycle arrest in HT29 â€‹cells. We confirmed that aspirin induces apoptosis in human HT29 colon cancer cells in a concentration-dependent manner. Conclusions: These results indicate that aspirin induces G1 arrest and apoptosis in colorectal cancer cells via the p53-CDK1 pathway. Aspirin may be a promising drug candidate for colon cancer prevention.

8.
Biomed Opt Express ; 15(4): 2498-2516, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633068

RESUMO

Comprehensive visualization and accurate extraction of tumor vasculature are essential to study the nature of glioma. Nowadays, tissue clearing technology enables 3D visualization of human glioma vasculature at micron resolution, but current vessel extraction schemes cannot well cope with the extraction of complex tumor vessels with high disruption and irregularity under realistic conditions. Here, we developed a framework, FineVess, based on deep learning to automatically extract glioma vessels in confocal microscope images of cleared human tumor tissues. In the framework, a customized deep learning network, named 3D ResCBAM nnU-Net, was designed to segment the vessels, and a novel pipeline based on preprocessing and post-processing was developed to refine the segmentation results automatically. On the basis of its application to a practical dataset, we showed that the FineVess enabled extraction of variable and incomplete vessels with high accuracy in challenging 3D images, better than other traditional and state-of-the-art schemes. For the extracted vessels, we calculated vascular morphological features including fractal dimension and vascular wall integrity of different tumor grades, and verified the vascular heterogeneity through quantitative analysis.

9.
Adv Mater ; : e2402182, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663035

RESUMO

Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.

10.
Environ Sci Technol ; 58(17): 7403-7414, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38627988

RESUMO

Photochemically generated reactive oxygen species (ROS) are widespread on the earth's surface under sunlight irradiation. However, the nonphotochemical ROS generation in surface water (e.g., paddy overlying water) has been largely neglected. This work elucidated the drivers of nonphotochemical ROS generation and its spatial distribution in undisturbed paddy overlying water, by combining ROS imaging technology with in situ ROS monitoring. It was found that H2O2 concentrations formed in three paddy overlying waters could reach 0.03-16.9 µM, and the ROS profiles exhibited spatial heterogeneity. The O2 planar-optode indicated that redox interfaces were not always generated at the soil-water interface but also possibly in the water layer, depending on the soil properties. The formed redox interface facilitated a rapid turnover of reducing and oxidizing substances, creating an ideal environment for the generation of ROS. Additionally, the electron-donating capacities of water at soil-water interfaces increased by 4.5-8.4 times compared to that of the top water layers. Importantly, field investigation results confirmed that sustainable •OH generation through nonphotochemical pathways constituted of a significant proportion of total daily production (>50%), suggesting a comparable or even greater role than photochemical ROS generation. In summary, the nonphotochemical ROS generation process reported in this study greatly enhances the understanding of natural ROS production processes in paddy soils.


Assuntos
Espécies Reativas de Oxigênio , Solo , Água , Espécies Reativas de Oxigênio/metabolismo , Solo/química , Oxirredução , Peróxido de Hidrogênio
11.
Magn Reson Imaging ; 109: 27-33, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438094

RESUMO

OBJECTIVE: The evaluate the feasibility of a novel deep learning-reconstructed ultra-fast respiratory-triggered T2WI sequence (DL-RT-T2WI) In liver imaging, compared with respiratory-triggered Arms-T2WI (Arms-RT-T2WI) and respiratory-triggered FSE-T2WI (FSE-RT-T2WI) sequences. METHODS: 71 patients with liver lesions underwent 3-T MRI and were prospectively enrolled. Two readers independently analyzed images acquired with DL-RT-T2WI, Arms-RT-T2WI, and FSE-RT-T2WI. The qualitative evaluation indicators, including overall image quality (OIQ), sharpness, noise, artifacts, lesion detectability (LC), lesion characterization (LD), cardiacmotion-related signal loss (CSL), and diagnostic confidence (DC), were evaluated in two readers, and further statistically compared using paired Wilcoxon rank-sum test among three sequences. RESULTS: 176 lesions were detected in DL-RT-T2W and Arms-RT-T2WI, and 175 were detected in FSE-RT-T2WI. The acquisition time of DL-RT-T2WI was improved by 4.8-7.9 folds compared to the other two sequences. The OIQ was scored highest for DL-RT-T2WI (R1, 4.61 ± 0.52 and R2, 4.62 ± 0.49), was significantly superior to Arms-RT-T2WI (R1, 4.30 ± 0.66 and R2, 4.34 ± 0.69) and FSE-RT-T2WI (R1, 3.65 ± 1.08 and R2, 3.75 ± 1.01). Artifacts and sharpness scored highest for DL-RT-T2WI, followed by Arms-RT-T2WI, and were lowest for FSE-RT-T2WI in both two readers. Noise and CSL for DL-RT-T2WI scored similar to Arms-RT-T2WI (P > 0.05) and were significantly superior to FSE-RT-T2WI (P < 0.001). Both LD and LC for DL-RT-T2WI were significantly superior to Arms-RT-T2WI and FSE-RT-T2WI in two readers (P < 0.001). DC for DL-RT-T2WI scored best, significantly superior to Arms-RT-T2WI (P < 0.010) and FSE-RT-T2WI (P < 0.001). CONCLUSIONS: The novel ultra-fast DL-RT-T2WI is feasible for liver imaging and lesion characterization and diagnosis, not only offers a significant improvement in acquisition time but also outperforms Arms-RT-T2WI and FSE-RT-T2WI concerning image quality and DC.


Assuntos
Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Artefatos
12.
Nat Commun ; 15(1): 2593, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519530

RESUMO

Long-wavelength, near-infrared small-molecule dyes are attractive in biophotonics. Conventionally, they rely on expanded aromatic structures for redshift, which comes at the cost of application performance such as photostability, cell permeability, and functionality. Here, we report a ground-state antiaromatic strategy and showcase the concise synthesis of 14 cationic aminofluorene dyes with mini structures (molecular weights: 299-504 Da) and distinct spectra covering 700-1600 nm. Aminofluorene dyes are cell-permeable and achieve rapid renal clearance via a simple 44 Da carboxylation. This accelerates optical diagnostics of renal injury by 50 min compared to existing macromolecular approaches. We develop a compact molecular sensing platform for in vivo intracellular sensing, and demonstrate the versatile applications of these dyes in multispectral fluorescence and optoacoustic imaging. We find that aromaticity reversal upon electronic excitation, as indicated by magnetic descriptors, not only reduces the energy bandgap but also induces strong vibronic coupling, resulting in ultrafast excited-state dynamics and unparalleled photostability. These results support the argument for ground-state antiaromaticity as a useful design rule of dye development, enabling performances essential for modern biophotonics.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Fluorescência
13.
Transl Oncol ; 42: 101861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301409

RESUMO

Beta-Parvin (PARVB) is an actin-binding protein with functionality in extracellular matrix binding. Recent studies suggest its potential as a biomarker for various cancers, given its role in governing several malignancies. Yet, its involvement and modulatory mechanisms in malignant melanoma remain under-explored.  In this research, we undertook a comprehensive pan-cancer analysis centered on PARVB. We probed its aberrant expression and prognostic implications, and assessed correlations between PARVB expression and immunocyte infiltration. This expression was subsequently corroborated using clinical samples. Both in vitro and in vivo, we discerned the functional ramifications of PARVB on melanoma. Furthermore, we scrutinized how HIF-1α/2α modulates PARVB and initiated a preliminary investigation into potential downstream pathways influenced by PARVB. Our results illuminate that elevated PARVB expression manifests across various tumors and significantly influences the prognosis of multiple cancers, emphasizing its peculiar expression and prognostic relevance in melanoma. Augmented PARVB levels were inversely proportional to immunocyte penetration in melanoma. Silencing PARVB curtailed cellular proliferation, migration, and invasion in vitro and decelerated tumor expansion in vivo. Notably, hypoxic conditions, triggering HIF-1α/2α activation, appear to elevate PARVB expression by anchoring to the hypoxia-specific responsive element within the PARVB promoter. Enhanced PARVB levels seem intertwined with the activation of cellular proliferation circuits and the damping of inflammatory trajectories. Collectively, these revelations posit PARVB as a potential prognostic indicator and therapeutic linchpin for malignant melanoma.

14.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341690

RESUMO

We present a joint experimental and computational study on the geometric and electronic structures of deprotonated sulfamic acid (SA) clusters [(SA)n-H]- (n = 1, 2) employing negative ion photoelectron spectroscopy and high-level ab initio calculations. The photoelectron spectra provide the vertical/adiabatic detachment energy (VDE/ADE) of the sulfamate anion (SM-) H2N●SO3- at 4.85 ± 0.05 and 4.58 ± 0.08 eV, respectively, and the VDE and ADE of the SM-●SA dimer at 6.41 ± 0.05 and 5.87 ± 0.08 eV, respectively. The significantly increased electron binding energies of the dimer confirm the enhanced electronic stability upon the addition of one SA molecule. The CCSD(T)-predicted VDEs/ADEs agree excellently with the experimental data, confirming the identified structures as the most stable ones. Two types of dimer isomers possessing different hydrogen bonding (HB) motifs are identified, corresponding to SM- binding to a zwitterionic SA (SM-●SAz) and a canonical SA (SM-●SAc), respectively. Two N-H⋯O HBs and one superior O-H⋯O HB are formed in the lowest-lying SM-●SAc, while SM-●SAz has three moderate N-H⋯O HBs, with the former being 4.71 kcal/mol more stable. Further theoretical analyses reveal that the binding strength advantage of SM-●SAc over SM-●SAz arises from its significant contributions of orbital interactions between fragments, illustrating that sulfamate strongly interacts with its parent SA acid and preferably chooses the canonical SA in the subsequent cluster formations. Given the prominent presence of SA, this study provides the first evidence that the canonical dimer model of sulfamic acid should exist as a superior configuration during cluster growth.

15.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341708

RESUMO

We launched a combined negative ion photoelectron spectroscopy and multiscale theoretical investigation on the geometric and electronic structures of a series of acetonitrile-solvated dodecaborate clusters, i.e., B12H122-·nCH3CN (n = 1-4). The electron binding energies of B12H122-·nCH3CN are observed to increase with cluster size, suggesting their enhanced electronic stability. B3LYP-D3(BJ)/ma-def2-TZVP geometry optimizations indicate each acetonitrile molecule binds to B12H122- via a threefold dihydrogen bond (DHB) B3-H3 ⁝⁝⁝ H3C-CN unit, in which three adjacent nucleophilic H atoms in B12H122- interact with the three methyl hydrogens of acetonitrile. The structural evolution from n = 1 to 4 can be rationalized by the surface charge redistributions through the restrained electrostatic potential analysis. Notably, a super-tetrahedral cluster of B12H122- solvated by four acetonitrile molecules with 12 DHBs is observed. The post-Hartree-Fock domain-based local pair natural orbital- coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)] calculated vertical detachment energies agree well with the experimental measurements, confirming the identified isomers as the most stable ones. Furthermore, the nature and strength of the intermolecular interactions between B12H122- and CH3CN are revealed by the quantum theory of atoms-in-molecules and the energy decomposition analysis. Ab initio molecular dynamics simulations are conducted at various temperatures to reveal the great kinetic and thermodynamic stabilities of the selected B12H122-·CH3CN cluster. The binding motif in B12H122-·CH3CN is largely retained for the whole halogenated series B12X122-·CH3CN (X = F-I). This study provides a molecular-level understanding of structural evolution for acetonitrile-solvated dodecaborate clusters and a fresh view by examining acetonitrile as a real hydrogen bond (HB) donor to form strong HB interactions.

16.
Technol Cancer Res Treat ; 23: 15330338241235554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404055

RESUMO

OBJECTIVE: We investigated the potential of dual-energy computed tomography (DECT) radiomics in assessing cancer-associated fibroblasts in clear cell renal carcinoma (ccRCC). METHODS: A retrospective analysis was conducted on 132 patients with ccRCC. The arterial and venous phase iodine-based material decomposition images (IMDIs), virtual non-contrast images, 70 keV, 100 keV, and 150 keV virtual monoenergetic images, and mixed energy images (MEIs) were obtained from the DECT datasets. On the Radcloud platform, radiomics feature extraction, feature selection, and model establishment were performed. Seven radiomics models were established using the support vector machine. The predictive performance was evaluated by utilizing receiver operating characteristic and the area under the curve (AUC) was calculated. Nomograms were constructed. RESULTS: The combined model demonstrated high efficiency in evaluating pseudocapsule thickness with AUC, specificity, and sensitivity of 0.833, 0.870, and 0.750, respectively in the validation set, surpassing those of other models. The precision, F1-score, and Youden index were also higher for the combined model. For evaluating the number of collagen fibers, the combined model exhibited the highest AUC (0.741) among all models, with a specificity of 0.830 and a sensitivity of 0.330. The AUC in the 150 kv model and IMDI model were slightly lower than those in the combined model (0.728 and 0.710, respectively), with corresponding sensitivity and specificity of 0.560/0.780 and 0.670/0.830. The nomogram exhibited that Rad-score had good prediction efficiency. CONCLUSION: DECT radiomics features have significant value in evaluating the interstitial fibers of ccRCC. The combined model of IMDI + MEI exhibits superior performance in assessing the thickness of the pseudocapsule, while the combined, 150 keV, and IMDI models demonstrate higher efficacy in evaluating collagen fiber number. Radiomics, combined with imaging features and clinical features, has excellent predictive performance. These findings offer crucial support for the clinical diagnosis, treatment, and prognosis of ccRCC and provide valuable insights into the application of DECT.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/patologia , Estudos Retrospectivos , Radiômica , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/patologia , Tomografia , Colágeno
17.
Medicine (Baltimore) ; 103(1): e36304, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181297

RESUMO

BACKGROUND: This study aimed to observe clinical efficacy of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) gel, medical collagen sponge and rhGM-CSF gel in combination with medical collagen sponge on deep second-degree burns of head, face or neck in infants. METHODS: A total of 108 infants with deep second-degree burns on head, face or neck were randomly divided into rhGM-CSF group, medical collagen sponge group, and rhGM-CSF + medical collagen sponge group. The scab dissolving time, healing time, bacterial positive rate and Vancouver scar scale were evaluated and analyzed. RESULTS: The data analysis showed that scab dissolving time and healing time were shorter in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group, and the difference was statistically significant (P < .05). Bacterial positive rate was lower in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). After 3 months, score of Vancouver scar scale (scar thickness, pliability, pigmentation and vascularity) was less in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). CONCLUSION: rhGM-CSF gel in combination with medical collagen sponge is significantly effective in treating deep second-degree burns of head, face or neck in infants. This combination is beneficial for infection control, acceleration of scab dissolving and wound healing, and reduction of scar hyperplasia and pigmentation, which is worthy of clinical application and promotion.


Assuntos
Queimaduras , Cicatriz , Lactente , Humanos , Colágeno/uso terapêutico , Resultado do Tratamento , Queimaduras/tratamento farmacológico
18.
Dalton Trans ; 53(4): 1663-1672, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168800

RESUMO

The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.

19.
Cancer Biol Ther ; 25(1): 2306676, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38289287

RESUMO

Fusobacterium nucleatum, an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in cancer progression and prognosis. While extensive research has revealed mechanistic links between Fusobacterium nucleatum and colorectal cancer, a comprehensive review spanning its presence and metastatic implications in cancers beyond colorectal origin is conspicuously absent. This paper broadens our perspective from colorectal cancer to various malignancies associated with Fusobacterium nucleatum, including oral, pancreatic, esophageal, breast, and gastric cancers. Our central focus is to unravel the mechanisms governing Fusobacterium nucleatum colonization, initiation, and promotion of metastasis across diverse cancer types. Additionally, we explore Fusobacterium nucleatum's adverse impacts on cancer therapies, particularly within the domains of immunotherapy and chemotherapy. Furthermore, this paper underscores the clinical research significance of Fusobacterium nucleatum as a potential tumor biomarker and therapeutic target, offering a novel outlook on its applicability in cancer detection and prognostic assessment.


Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Fusobacterium nucleatum , Carcinogênese , Transformação Celular Neoplásica
20.
Curr Res Food Sci ; 8: 100657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204880

RESUMO

Hydroxypropyl starch (HPS) nano antibacterial films incorporating Ethylene Diamine Tetraacetic Acid (EDTA) and lysozyme (LY) were fabricated via solvent casting method. The synergistic effects of EDTA and LY on the microstructure, component interactions, color, optical, mechanical, barrier and antibacterial properties of HPS nano antibacterial films were evaluated. The results indicated that EDTA and LY were well dispersed in the matrix of the HPS nano antibacterial films, the film-forming substrates have good compatibility, resulting in a dense multi-layer structure of the HPS nano antibacterial films. The addition of EDTA and LY increased the color parameters (L*, a*, b* and △E*) of the HPS nano antibacterial films. The synergistic effects of EDTA and LY significantly decreased the light transmission of the HPS nano antibacterial films. The presence of EDTA and LY increased the tensile strength (TS) and the elongation at break (EAB) of the HPS nano antibacterial films. The TS and EAB of E2.5L1 reached the highest values of 6.329 MPa and 50.24 %, respectively. The incorporation of EDTA and LY had positive effects on the improvement of water vapor permeability (WVP) and oxygen permeability (OP). The WVP and OP of E2.5L1 reached the highest values of 0.9350 × 10-12 g cm/cm2•s•Pa and 0.297 × 10 -2 g m/m2 •d, respectively. In addition, EDTA and LY had significant synergistic effects on the antibacterial activity against S. aureus (Gram-positive bacteria) and E. coli (Gram-negative bacteria). E2.5L1 exhibited the highest antibacterial activity and the inhibition zone diameters of S. aureus and E. coli were 3.69 mm and 4.28 mm, respectively. The HPS nano antibacterial films incorporating EDTA and LY are potential functional packaging materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA