RESUMO
STUDY QUESTION: Does the downregulation of cell division cycle 42 (CDC42) protein in endometrial stroma lead to endometrial senescence in patients with recurrent implantation failure (RIF), and what is the potential mechanism? SUMMARY ANSWER: CDC42 deficiency causes endometrial stromal senescence and decidualization defects, impairing uterine receptivity of RIF patients, via activation of Wnt signaling pathway. WHAT IS KNOWN ALREADY: Uterine aging is unique due to the cyclic remodeling and decidualization of endometrial tissue. Several transcriptomic studies have reported increased senescence in the endometrium in young patients with RIF. Our previous transcriptomic sequencing study discovered that endometrium from women with RIF showed downregulation of CDC42, which is an essential molecule affected by various senescence-related diseases. STUDY DESIGN, SIZE, DURATION: The endometrial samples of a total of 71 fertile control patients and 37 RIF patients were collected to verify the association between CDC42 expression and endometrial senescence of RIF patients. Primary endometrial stromal cells (EnSCs) were isolated from endometrial biopsies taken from patients without any endometrial complications and planning to undergo IVF, then subjected to adenovirus-mediated CDC42 knockdown and decidualization induction to explore the detailed mechanism by which CDC42 governs stromal senescence and decidualization. Wnt inhibitor XAV-939 was used to correct the endometrial senescence and decidualization defect. PARTICIPANTS/MATERIALS, SETTING, METHODS: Senescence was determined by cell cycle arrest markers (e.g. P16, P21, and P53), SASP molecules (e.g. IL6 and CXCL8), and SA-ß-gal staining. Masson's staining and Sirius Red staining were used to detect the endometrial fibrosis. Decidualization was evaluated by the mRNA expression and protein secretion of PRL and IGFBP1, F-actin immunostaining, and the BeWo spheroids 'in vitro implantation' model. Methods used to assess cell function included adenovirus transduction, RNA-sequencing, bioinformatic analysis, western blotting, RT-qPCR, ELISA, and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE: Here, we observed remarkably increased levels of stromal senescence and fibrosis, along with stromal CDC42 deficiency, in the endometrium of patients with RIF (P < 0.001). Knockdown of CDC42 effectively induced premature senescence in EnSCs, leading to aberrant accumulation of senescent EnSCs and collagen deposition during decidualization. CDC42 deficiency in EnSCs restrained the decidualization differentiation and receptivity to trophoblast cells. Transcriptomic analysis revealed Wnt signaling activation as a critical downstream alteration in CDC42-deficient EnSCs. Mechanistically, CDC42 interacted with AKT competitively to impede the binding of GSK3ß to AKT. Knockdown of CDC42 increased AKT-mediated phosphorylation of GSK3ß to inactivate the Axin-GSK3ß destruction complex, leading to accumulation and nuclear translocation of ß-catenin. Importantly, Wnt signaling inhibitors partially corrected the endometrial senescence caused by CDC42 deficiency, and improved both decidualization and trophoblast invasion. LARGE SCALE DATA: RNA-seq data sets generated in this study have been deposited at the NCBI database with BioProject accession number PRJNA1102745. LIMITATIONS, REASONS FOR CAUTION: The present study was based on in vitro cell cultures. Further studies involving CDC42-regulated endometrial senescence are needed in knockout mice model and human endometrial assembloids. WIDER IMPLICATIONS OF THE FINDINGS: In addition to uncovering endometrial senescence in RIF, our findings underscore the significance of CDC42 in modulating EnSC senescence to maintain the decidualization function, and suggest Wnt signaling inhibitors as potential therapeutic agents for alleviating endometrial senescence. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Natural Science Foundation of China [82271698 (R.J.), 82030040 (H.S.), 82288102 (H.W.), and 82371680 (G.Y.)]; the Natural Science Foundation of Jiangsu Province [BK20231117 (R.J.)]; and the Medical Science and Technology Development Foundation of Nanjing Department of Health [YKK23097 (Y.Z.)]. The authors declare no potential conflicts of interest.
RESUMO
STUDY QUESTION: Does abnormal serotonin homeostasis contribute to impaired endometrial decidualization in patients with recurrent implantation failure (RIF)? SUMMARY ANSWER: Abnormal serotonin homeostasis in patients with RIF, which is accompanied by decreased monoamine oxidase (MAO) expression, affects the decidualization of endometrial stromal cells and leads to embryo implantation failure. WHAT IS KNOWN ALREADY: Previous studies have indicated that the expression of MAO, which metabolizes serotonin, is reduced in the endometrium of patients with RIF, and serotonin can induce disruption of implantation in rats. However, whether abnormal serotonin homeostasis leads to impaired decidualization in patients with RIF and, if so, the mechanism involved, remains unclear. STUDY DESIGN SIZE DURATION: Endometrial samples from 25 patients with RIF and 25 fertile patients were used to investigate the expression levels of monoamine oxidase A (MAOA), monoamine oxidase B (MAOB), and serotonin. We isolated human endometrial stromal cells to investigate the role of MAOA, MAOB, and serotonin in inducing decidualization in vitro and further explored the underlying mechanism using RNA-sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC/MS) analyses. PARTICIPANTS/MATERIALS SETTING METHODS: The levels of serotonin in the endometrium of patients with RIF were detected by ELISA and immunohistofluorescence, and the key genes involved in abnormal serotonin metabolism were analyzed via combination with single-cell sequencing data. The effects of MAOA or MAOB on the decidualization of stromal cells were investigated using an in vitro human endometrial stromal cell-induced decidualization model and a mouse artificially induced decidualization model. The potential mechanisms by which MAOA and MAOB regulate decidualization were explored by RNA-seq and LC/MS analysis. MAIN RESULTS AND THE ROLE OF CHANCE: We found that women with RIF have abnormal serotonin metabolism in the endometrium and attenuated MAO in endometrial stromal cells. Endometrial decidualization was accompanied by increased MAO in vivo and in vitro. However attenuated MAO caused an increased local serotonin content in the endometrium, impairing stromal cell decidualization. RNA-seq and LC/MS analyses showed that abnormal lipid metabolism, especially phosphatidylcholine metabolism, was involved in the defective decidualization caused by MAO deficiency. Furthermore, decidualization defects were rescued by phosphatidylcholine supplementation. LARGE SCALE DATA: RNA-seq information and raw data can be found at NCBI Bioproject number PRJNA892255. LIMITATIONS REASONS FOR CAUTION: This study revealed that impaired serotonin metabolic homeostasis and abnormally reduced MAO expression were among the reasons for RIF. However, the source and other potential functions of serotonin in the endometrium remain to be further explored. WIDER IMPLICATIONS OF THE FINDINGS: This study provides new insights into the mechanisms of serotonin homeostasis in human endometrial decidualization and new biomarkers or targets for the treatment of patients with RIF. STUDY FUNDING/COMPETING INTERESTS: X. Sheng is supported by grants from the National Natural Science Foundation of China (82001629), the Wenzhou Basic Public Welfare Research Project (Y20240030), the Youth Program of Natural Science Foundation of Jiangsu Province (BK20200116), and Jiangsu Province Postdoctoral Research Funding (2021K277B). H.S. is supported by grants from the National Natural Science Foundation of China (82030040). G.Y. is supported by grants from the National Natural Science Foundation of China (82171653). The authors declare no conflicts of interest.
RESUMO
BACKGROUND: The therapeutic potential of immune checkpoint blockade (ICB) extends across various cancers; however, its effectiveness in treating hepatocellular carcinoma (HCC) is frequently curtailed by both inherent and developed resistance. OBJECTIVE: This research explored the effectiveness of integrating anlotinib (a broad-spectrum tyrosine kinase inhibitor) with programmed death-1 (PD-1) blockade and offers mechanistic insights into more effective strategies for treating HCC. METHODS: Using patient-derived organotypic tissue spheroids and orthotopic HCC mouse models, we assessed the effectiveness of anlotinib combined with PD-1 blockade. The impact on the tumour immune microenvironment and underlying mechanisms were assessed using time-of-flight mass cytometry, RNA sequencing, and proteomics across cell lines, mouse models, and HCC patient samples. RESULTS: The combination of anlotinib with an anti-PD-1 antibody enhanced the immune response against HCC in preclinical models. Anlotinib remarkably suppressed the expression of transferrin receptor (TFRC) via the VEGFR2/AKT/HIF-1α signaling axis. CD8+ T-cell infiltration into the tumour microenvironment correlated with low expression of TFRC. Anlotinib additionally increased the levels of the chemokine CXCL14, crucial for attracting CD8+ T cells. CXCL14 emerged as a downstream effector of TFRC, exhibiting elevated expression following the silencing of TFRC. Importantly, low TFRC expression was also associated with a better prognosis, enhanced sensitivity to combination therapy, and a favourable response to anti-PD-1 therapy in patients with HCC. CONCLUSIONS: Our findings highlight anlotinib's potential to augment the efficacy of anti-PD-1 immunotherapy in HCC by targeting TFRC and enhancing CXCL14-mediated CD8+ T-cell infiltration. This study contributes to developing novel therapeutic strategies for HCC, emphasizing the role of precision medicine in oncology. HIGHLIGHTS: Synergistic effects of anlotinib and anti-PD-1 immunotherapy demonstrated in HCC preclinical models. Anlotinib inhibits TFRC expression via the VEGFR2/AKT/HIF-1α pathway. CXCL14 upregulation via TFRC suppression boosts CD8+ T-cell recruitment. TFRC emerges as a potential biomarker for evaluating prognosis and predicting response to anti-PD-1-based therapies in advanced HCC patients.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Imunoterapia , Indóis , Neoplasias Hepáticas , Quinolinas , Receptores da Transferrina , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Animais , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Humanos , Imunoterapia/métodos , Receptores da Transferrina/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Recurrent spontaneous miscarriage (RSM) is one of the complications during pregnancy. However, the pathogenesis of RSM is far from fully elucidated. OBJECTIVE: Since the endocytic pathway is crucial for cellular homeostasis, our study aimed to explore the roles of endocytic recycling, especially EH domain containing 1 (EHD1), a member of the endocytic recycling compartment, in RSM. STUDY DESIGN: We first investigated the expression of the endocytic pathway member EHD1 in villi from the normal and RSM groups. Then, we performed RNA sequencing and experiments in villi, HTR8 cells and BeWo cells to determine the mechanisms by which EHD1 induced RSM. Finally, placenta-specific EHD1-overexpressing mice were generated to investigate the RSM phenotype in vivo. RESULTS: EHD1 was expressed in extravillous trophoblasts (EVTs) and syncytiotrophoblast (STB) in the villi. Compared with the control group, RSM patients expressed higher EHD1. A high level of EHD1 decreased proliferation, promoted apoptosis, and reduced the migration and invasion of HTR8 cells by activating the TGFBR1-SMAD2/3 signaling pathway. The TGFBR1 antagonist LY3200882 partially reversed the EHD1 overexpression-induced changes in the cell phenotype. Besides, a high level of EHD1 also induced abnormal syncytialization, which disturbed maternal-fetal material exchanges. In a mouse model, placenta-specific overexpression of EHD1 led to the failure of spiral artery remodeling, excessive syncytialization and miscarriage. CONCLUSIONS: Increased expression of EHD1 impaired the invasion of EVTs mediated by the TGFBR1-SMAD2/3 signaling pathway and induced abnormal syncytialization of STB, which is at least partially responsible for RSM.
RESUMO
BACKGROUND: Intrauterine adhesions (IUAs) jeopardise uterine function in women, which is a great challenge in the clinic. Previous studies have shown that endometrial perivascular cells (En-PSCs) can improve the healing of scarred uteri and that hydroxysafflor yellow A (HSYA) promotes angiogenesis. The purpose of this study was to observe whether the combination of En-PSCs with HSYA could improve the blood supply and fertility in the rat uterus after full-thickness injury. METHODS: En-PSCs were sorted by flow cytometry, and the effect of HSYA on the proliferation and angiogenesis of the En-PSCs was detected using CCK-8 and tube formation assays. Based on a previously reported rat IUA model, the rat uteri were sham-operated, spontaneously regenerated, or treated with collagen-loaded PBS, collagen-loaded HSYA, collagen-loaded En-PSCs, or collagen-loaded En-PSCs with HSYA, and then collected at both 30 and 90 days postsurgery. HE staining and Masson staining were used to evaluate uterine structure and collagen fibre deposition, and immunohistochemical staining for α-SMA and vWF was used to evaluate myometrial regeneration and neovascularization in each group. A fertility assay was performed to detect the recovery of pregnancy function in each group. RNA-seq was performed to determine the potential mechanism underlying En-PSCs/HSYA treatment. Immunofluorescence, tube formation assays, and Western blot were used to validate the molecular mechanism involved. RESULTS: The transplantation of Collagen/En-PSCs/HSYA markedly promoted uterine repair in rats with full-thickness injury by reducing fibrosis, increasing endometrial thickness, regenerating myometrium, promoting angiogenesis, and facilitated live births. RNA sequencing results suggested that En-PSCs/HSYA activated the NRG1/ErbB4 signaling pathway. In vitro tube formation experiments revealed that the addition of an ErbB inhibitor diminished the tube formation ability of cocultured En-PSCs and HUVECs. Western blot results further showed that elevated levels of NRG1 and ErbB4 proteins were detected in the Collagen/En-PSCs/HSYA group compared to the Collagen/En-PSCs group. These collective results suggested that the beneficial effects of the transplantation of Collagen/En-PSCs/HSYA might be attributed to the modulation of the NRG1/ErbB4 signaling pathway. CONCLUSIONS: The combination of En-PSCs/HSYA facilitated morphological and functional repair in rats with full-thickness uterine injury and may promote endometrial angiogenesis by regulating the NRG1/ErbB4 signaling pathway.
Assuntos
Chalcona , Endométrio , Quinonas , Útero , Animais , Feminino , Ratos , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Humanos , Útero/efeitos dos fármacos , Útero/metabolismo , Chalcona/análogos & derivados , Chalcona/farmacologia , Quinonas/farmacologia , Quinonas/uso terapêutico , Ratos Sprague-Dawley , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Proliferação de Células/efeitos dos fármacos , Regeneração/efeitos dos fármacosRESUMO
Sub-nanoporous membranes with ion selective transport functions are important for energy utilization, environmental remediation, and fundamental bioinspired engineering. Although mono/multivalent ions can be separated by monovalent ion selective membranes (MISMs), the current theory fails to inspire rapid advances in MISMs. Here, we apply transition state theory (TST) by regulating the enthalpy barrier (ΔH) and entropy barrier (ΔS) for designing next-generation monovalent cation exchange membranes (MCEMs) with great improvement in ion selective separation. Using a molecule-absorbed porous material as an interlayer to construct a denser selective layer can achieve a greater absolute value of ΔS for Li+ and Mg2+ transport, greater ΔH for Mg2+ transport and lower ΔH for Li+ transport. This recorded performance with a Li+/Mg2+ perm-selectivity of 25.50 and a Li+ flux of 1.86â mol â m-2 â h-1 surpasses the contemporary "upper bound" plot for Li+/Mg2+ separations. Most importantly, our synthesized MCEM also demonstrates excellent operational stability during the selective electrodialysis (S-ED) processes for realizing scalability in practical applications.
RESUMO
The pituitary is the central endocrine gland with effects on metabolic dysfunction-associated steatotic liver disease (MASLD). However, it is not clear whether the pituitary responds to free fatty acid (FFA) toxicity, thus dysregulating hepatic lipid metabolism. Here, we demonstrate that decreased prolactin (PRL) levels are involved in the association between FFA and MASLD based on a liver biospecimen-based cohort. Moreover, overloaded FFAs decrease serum PRL levels, thus promoting liver steatosis in mice with both dynamic diet intervention and stereotactic pituitary FFA injection. Mechanistic studies show that excessive FFA sensing in pituitary lactotrophs inhibits the synthesis and secretion of PRL in a cell-autonomous manner. Notably, inhibiting excessive lipid uptake using pituitary stereotaxic virus injection or a specific drug delivery system effectively ameliorates hepatic lipid accumulation by improving PRL levels. Targeted inhibition of pituitary FFA sensing may be a potential therapeutic target for liver steatosis.
Assuntos
Ácidos Graxos não Esterificados , Fígado Gorduroso , Lactotrofos , Prolactina , Animais , Prolactina/metabolismo , Prolactina/sangue , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Lactotrofos/metabolismo , Lactotrofos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Masculino , Metabolismo dos Lipídeos , Fígado/metabolismoRESUMO
Adipose progenitor cells (APCs) are heterogeneous stromal cells and help to maintain metabolic homeostasis. However, the influence of obesity on human APC heterogeneity and the role of APC subpopulations on regulating glucose homeostasis remain unknown. Here, we find that APCs in human visceral adipose tissue contain four subsets. The composition and functionality of APCs are altered in patients with type 2 diabetes (T2D). CD9+CD55low APCs are the subset which is significantly increased in T2D patients. Transplantation of these cells from T2D patients into adipose tissue causes glycemic disturbance. Mechanistically, CD9+CD55low APCs promote T2D development through producing bioactive proteins to form a detrimental niche, leading to upregulation of adipocyte lipolysis. Depletion of pathogenic APCs by inducing intracellular diphtheria toxin A expression or using a hunter-killer peptide improves obesity-related glycemic disturbance. Collectively, our data provide deeper insights in human APC functionality and highlights APCs as a potential therapeutic target to combat T2D. All mice utilized in this study are male.
Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Homeostase , Obesidade , Análise de Célula Única , Células-Tronco , Humanos , Animais , Análise de Célula Única/métodos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Camundongos , Células-Tronco/metabolismo , Glucose/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/citologia , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Camundongos Endogâmicos C57BL , Lipólise , Feminino , Pessoa de Meia-IdadeRESUMO
Major zygotic genome activation (ZGA) occurs at the late 2-cell stage and involves the activation of thousands of genes, supporting early embryonic development. The reasons underlying the regulation of ZGA are not clear. Acetylation modifications of histone tails promote transcriptional activation, and the maternal deletion of H4K16ac leads to failure in ZGA. GATAD2B is one of the core subunits of the nucleosome remodelling and histone deacetylation (NuRD) complex. Our research has shown that GATAD2B exhibits specific nucleus localization and high protein expression from the late 2-cell stage to the 8-cell stage. This intriguing phenomenon prompted us to investigate the relationship between GATAD2B and the ZGA. We discovered a distinctive pattern of GATAD2B, starting from the late 2-cell stage with nuclear localization. GATAD2B depletion resulted in defective embryonic development, including increased DNA damage at morula, decreased blastocyst formation rate, and abnormal differentiation of ICM/TE lineages. Consistent with the delay during the cleavage stage, the transcriptome analysis of the 2-cell embryo revealed inhibition of the cell cycle G2/M phase transition pathway. Furthermore, the GATAD2B proteomic data provided clear evidence of a certain association between GATAD2B and molecules involved in the cell cycle pathway. As hypothesized, GATAD2B-deficient 2-cell embryos exhibited abnormalities in ZGA during the maternal-to-embryonic transition, with lower expression of the major ZGA marker MERVL. Overall, our results demonstrate that GATAD2B is essential for early embryonic development, in part through facilitating ZGA.
Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Zigoto , Animais , Zigoto/metabolismo , Desenvolvimento Embrionário/genética , Camundongos , Feminino , Genoma , Blastocisto/metabolismo , Dano ao DNARESUMO
RESEARCH QUESTION: What is the efficiency and efficacy of the novel Biorocks semi-automated vitrification system, which is based on a hydrogel? DESIGN: This comparative experimental laboratory study used mouse model and human day 6 blastocysts. Mouse oocytes and embryos were quality assessed post-vitrification. RESULTS: The Biorocks system successfully automated the solution exchanges during the vitrification process, achieving a significantly improved throughput of up to 36 embryos/oocytes per hour. Using hydrogel for cryoprotective agent delivery, 12 vessels could be processed simultaneously, fitting comfortably within an assisted reproductive technology (ART) workstation. In tests involving the cryopreservation of oocytes and embryos, the system yielded outcomes equivalent to the manual Cryotop method. For example, the survival rate for mouse oocytes was 98% with the Biorocks vitrification system (nâ¯=â¯46) and 95% for the manual Cryotop method (nâ¯=â¯39), of which 46% and 41%, respectively, progressed to blastocysts on day 5 after IVF. CC-grade day 6 human blastocysts processed with the Biorocks system (nâ¯=â¯39) were associated with a 92% 2 h re-expansion rate, equivalent to the 90% with Cryotop (nâ¯=â¯30). The cooling/warming rates achieved by the Biorocks system were 31,900°C/minute and 24,700°C/minute, respectively. Oocyte quality was comparable or better post-vitrification for Biorocks than Cryotop. CONCLUSIONS: The Biorocks semi-automated vitrification system offers enhanced throughput without compromising the survival and developmental potential of oocytes and embryos. This innovative system may help to increase the efficiency and standardization of vitrification in ART clinics. Further investigations are needed to confirm its efficacy in a broader clinical context.
Assuntos
Criopreservação , Vitrificação , Animais , Camundongos , Criopreservação/métodos , Criopreservação/instrumentação , Humanos , Feminino , Blastocisto/fisiologia , Hidrogéis , Oócitos , Embrião de Mamíferos , Técnicas de Cultura Embrionária/instrumentação , Técnicas de Cultura Embrionária/métodosRESUMO
BACKGROUND: The objective of this research was to elucidate the association between the length of infertility and the outcomes of intrauterine insemination (IUI) in women of varying ages - a topic that has been the subject of investigation for numerous years, yet lacks a definitive consensus. METHODS: A retrospective cohort investigation involving 5268 IUI cycles was undertaken at the Reproductive Medicine Center of Nanjing Drum Tower Hospital from 2016 to 2022. Utilizing the smooth fitting curve along with threshold and saturation effect analysis, the correlation between infertility duration and IUI clinical pregnancy rates was discerned. Moreover, patients were bifurcated into two cohorts based on their respective infertility durations. A secondary examination was also performed employing propensity-score matching to mitigate the impact of confounding variables. Subsequent threshold and saturation effect analysis was carried out across various subgroups, segmented on the basis of age differentiation. RESULTS: When the duration of infertility was more than 5 years, the clinical pregnancy rate decreased with the increase of infertility duration (aOR: 0.894, 95%CI: 0.817-0.991, p = 0.043). The multivariate regression analysis suggested that longer duration of infertility (≥ 5 years) was significantly correlated with the lower clinical pregnancy rate (aOR: 0.782, 95% CI: 0.643-0.950, p = 0.01). After the propensity-score matching, the clinical pregnancy rate of women with longer infertility duration were also higher. When the duration of infertility was more than 5 years, the clinical pregnancy rate of women younger than 35 years old decreased with the increase of infertility duration (aOR: 0.906, 95%CI: 0.800-0.998, p = 0.043). CONCLUSIONS: The clinical pregnancy rate and live birth rate of IUI in young women (< 35 years old) who have been infertile for more than 5 years significantly decrease with the prolongation of infertility time. Therefore, for young women who have been infertile for more than 5 years, IUI may not be the best choice.
Assuntos
Infertilidade , Gravidez , Humanos , Feminino , Adulto , Estudos Retrospectivos , Infertilidade/terapia , Fertilização in vitro , Taxa de Gravidez , InseminaçãoRESUMO
BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most complex endocrine disorders in women of reproductive age. Abnormal proliferation of granulosa cells (GCs) is an important cause of PCOS. This study aimed to explore the role of fatty acid-binding protein 5 (FABP5) in granulosa cell (GC) proliferation in polycystic ovary syndrome (PCOS) patients. METHODS: The FABP5 gene, which is related to lipid metabolism, was identified through data analysis of the gene expression profiles of GSE138518 from the Gene Expression Omnibus (GEO) database. The expression levels of FABP5 were measured by quantitative real-time PCR (qRTâPCR) and western blotting. Cell proliferation was evaluated with a cell counting kit-8 (CCK-8) assay. Western blotting was used to assess the expression of the proliferation marker PCNA, and immunofluorescence microscopy was used to detect Ki67 expression. Moreover, lipid droplet formation was detected with Nile red staining, and qRTâPCR was used to analyze fatty acid storage-related gene expression. RESULTS: We found that FABP5 was upregulated in ovarian GCs obtained from PCOS patients and PCOS mice. FABP5 knockdown suppressed lipid droplet formation and proliferation in a human granulosa-like tumor cell line (KGN), whereas FABP5 overexpression significantly enhanced lipid droplet formation and KGN cell proliferation. Moreover, we determined that FABP5 knockdown inhibited PI3K-AKT signaling by suppressing AKT phosphorylation and that FABP5 overexpression activated PI3K-AKT signaling by facilitating AKT phosphorylation. Finally, we used the PI3K-AKT signaling pathway inhibitor LY294002 and found that the facilitation of KGN cell proliferation and lipid droplet formation induced by FABP5 overexpression was inhibited. In contrast, the PI3K-AKT signaling pathway agonist SC79 significantly rescued the suppression of KGN cell proliferation and lipid droplet formation caused by FABP5 knockdown. CONCLUSIONS: FABP5 promotes active fatty acid synthesis and excessive proliferation of GCs by activating PI3K-AKT signaling, suggesting that abnormally high expression of FABP5 in GCs may be a novel biomarker or a research target for PCOS treatment.
Assuntos
Proteínas de Ligação a Ácido Graxo , MicroRNAs , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Camundongos , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Células da Granulosa/metabolismo , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Intrauterine adhesion is a major cause of female reproductive disorders. Although we and others uncontrolled pilot studies showed that treatment with autologous bone marrow stem cells made a few patients with severe intrauterine adhesion obtain live birth, no large sample randomized controlled studies on this therapeutic strategy in such patients have been reported so far. To verify if the therapy of autologous bone marrow stem cells-scaffold is superior to traditional treatment in moderate to severe intrauterine adhesion patients in increasing their ongoing pregnancy rate, we conducted this randomized controlled clinical trial. Totally 195 participants with moderate to severe intrauterine adhesion were screened and 152 of them were randomly assigned in a 1:1 ratio to either group with autologous bone marrow stem cells-scaffold plus Foley balloon catheter or group with only Foley balloon catheter (control group) from February 2016 to January 2020. The per-protocol analysis included 140 participants: 72 in bone marrow stem cells-scaffold group and 68 in control group. The ongoing pregnancy occurred in 45/72 (62.5%) participants in the bone marrow stem cells-scaffold group which was significantly higher than that in the control group (28/68, 41.2%) (RR=1.52, 95%CI 1.08-2.12, P=0.012). The situation was similar in live birth rate (bone marrow stem cells-scaffold group 56.9% (41/72) vs. control group 38.2% (26/68), RR=1.49, 95%CI 1.04-2.14, P=0.027). Compared with control group, participants in bone marrow stem cells-scaffold group showed more menstrual blood volume in the 3rd and 6th cycles and maximal endometrial thickness in the 6th cycle after hysteroscopic adhesiolysis. The incidence of mild placenta accrete was increased in bone marrow stem cells-scaffold group and no severe adverse effects were observed. In conclusion, transplantation of bone marrow stem cells-scaffold into uterine cavities of the participants with moderate to severe intrauterine adhesion increased their ongoing pregnancy and live birth rates, and this therapy was relatively safe.
Assuntos
Doenças Uterinas , Feminino , Humanos , Gravidez , Células da Medula Óssea , Endométrio , Taxa de Gravidez , Aderências Teciduais , ÚteroRESUMO
Recurrent implantation failure (RIF) patients exhibit poor endometrial receptivity and abnormal decidualization with reduced effectiveness and exposure to progesterone, which is an intractable clinical problem. However, the associated molecular mechanisms remain elusive. We found that EH domain containing 1 (EHD1) expression was abnormally elevated in RIF and linked to aberrant endometrial decidualization. Here we show that EHD1 overexpressed in human endometrial stromal cells significantly inhibited progesterone receptor (PGR) transcriptional activity and the responsiveness to progesterone. No significant changes were observed in PGR mRNA levels, while a significant decrease in progesterone receptor B (PRB) protein level. Indeed, EHD1 binds to the PRB protein, with the K388 site crucial for this interaction. Overexpression of EHD1 promotes the SUMOylation and ubiquitination of PRB, leading to the degradation of the PRB protein. Supplementation with the de-SUMOylated protease SENP1 ameliorated EHD1-repressed PRB transcriptional activity. To establish a functional link between EHD1 and the PGR signalling pathway, sg-EHD1 were utilized to suppress EHD1 expression in HESCs from RIF patients. A significant increase in the expression of prolactin and insulin-like growth factor-binding protein 1 was detected by interfering with the EHD1. In conclusion, we demonstrated that abnormally high expression of EHD1 in endometrial stromal cells attenuated the activity of PRB associated with progesterone resistance in a subset of women with RIF.
Assuntos
Decídua , Progesterona , Humanos , Feminino , Progesterona/farmacologia , Progesterona/metabolismo , Decídua/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Cisteína EndopeptidasesRESUMO
Premature ovarian failure (POF) features an upward incidence nowadays, and the human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived exosomes (MSC-Exos) have shown applied values in the recovery of ovarian function. Here, a novel exosome-encapsulated microcarrier prepared by microfluidic technology for ovarian repair after chemotherapy damage is presented. The exosomes derived from lipopolysaccharide (LPS)-preconditioned hUC-MSCs are encapsulated with hyaluronic acid methacryloyl (HAMA) via microfluidic electrospray, which is named HAMA/MSC-Exos. Attributing to the biocompatibility and semipermeable property of HAMA, the encapsulated exosomes show great viability and controllable release behavior from HAMA. It is demonstrated that in situ transplantation of HAMA/MSC-Exos can rescue ovarian functions of cyclophosphamide-induced ovarian failure in mice by increasing ovarian volume, improving the number of antral follicles and restoring fertility. It is believed that the transplantation of HAMA/MSC-Exos will provide a new concept for the treatment of POF in clinical practice.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Ácido Hialurônico/farmacologia , Lipopolissacarídeos/farmacologia , MicrofluídicaRESUMO
Background: Previous studies suggested higher serum progesterone (P) levels were strongly associated with a lower clinical pregnancy rate (CPR) for in vitro fertilization-embryo transfer (IVF-ET). However, the effect of increased serum P levels on the day of human chorionic gonadotropin (hCG) administration on clinical outcomes in short-acting gonadotropin-releasing hormone agonist (GnRHa) downregulated IVF-ET cycles remains unclear. Methods: We conducted a retrospective cohort study from January 2017 to December 2021, which included a total of 1664 patients receiving their first short-acting GnRHa IVF-ET cycles at our reproductive medicine centre of Nanjing Drum Tower Hospital. The smooth curve fitting and interaction analysis were employed to analyse the association between the CPR and the serum P levels with different embryo types (cleavage-stage embryo or blastocyst). In addition, total cycles were grouped according to different P levels on the trigger day of hCG administration for further analysis. Results: The CPR of patients with increased serum P level (higher than 1.5 ng/mL) on the hCG day did not decrease. A smoothing curve fitting showed that the CPR did not change obviously with the increase in serum P levels. Subgroup analysis of different types of embryos transferred showed that no correlation was observed between the CPR and serum P levels on the day of hCG administration in cleavage-stage embryo transfer cycles. However, the CPR of patients receiving blastocyst transfer showed a downward trend with the increase in serum P levels. At the same time, an interaction analysis also confirmed that the CPR of blastocyst transfer was more likely to be affected by elevated serum P levels on the hCG day. Conclusion: In the luteal phase short-acting GnRHa downregulated IVF-ET cycles, the elevated serum P levels on the hCG day did not affect the CPR of cleavage-stage embryo transfer but reduced the CPR of blastocyst transfer.
RESUMO
BACKGROUND: With advanced maternal age, abnormalities during oocyte meiosis increase significantly. Aneuploidy is an important reason for the reduction in the quality of aged oocytes. However, the molecular mechanism of aneuploidy in aged oocytes is far from understood. Histone acetyltransferase 1 (HAT1) has been reported to be essential for mammalian development and genome stability, and involved in multiple organ aging. Whether HAT1 is involved in ovarian aging and the detailed mechanisms remain to be elucidated. METHODS: The level of HAT1 in aged mice ovaries was detected by immunohistochemical and immunoblotting. To explore the function of HAT1 in the process of mouse oocyte maturation, we used Anacardic Acid (AA) and small interfering RNAs (siRNA) to culture cumulus-oocyte complexes (COCs) from ICR female mice in vitro and gathered statistics of germinal vesicle breakdown (GVBD), the first polar body extrusion (PBE), meiotic defects, aneuploidy, 2-cell embryos formation, and blastocyst formation rate. Moreover, the human granulosa cell (GC)-like line KGN cells were used to investigate the mechanisms of HAT1 in this progress. RESULTS: HAT1 was highly expressed in ovarian granulosa cells (GCs) from young mice and the expression of HAT1 was significantly decreased in aged GCs. AA and siRNAs mediated inhibition of HAT1 in GCs decreased the PBE rate, and increased meiotic defects and aneuploidy in oocytes. Further studies showed that HAT1 could acetylate Forkhead box transcription factor O1 (FoxO1), leading to the translocation of FoxO1 into the nucleus. Resultantly, the translocation of acetylated FoxO1 increased the expression of amphiregulin (AREG) in GCs, which plays a significant role in oocyte meiosis. CONCLUSION: The present study suggests that decreased expression of HAT1 in GCs is a potential reason corresponding to oocyte age-related meiotic defects and provides a potential therapeutic target for clinical intervention to reduce aneuploid oocytes.
Assuntos
Células da Granulosa , Oócitos , Animais , Feminino , Humanos , Camundongos , Aneuploidia , Células da Granulosa/metabolismo , Histona Acetiltransferases/metabolismo , Mamíferos , Meiose/genética , Camundongos Endogâmicos ICR , Oócitos/metabolismoRESUMO
The correct assembly of the spindle apparatus directly regulates the precise separation of chromosomes in mouse oocytes, which is crucial for obtaining high-quality oocytes capable of successful fertilization. The localization, assembly, migration, and disassembly of the spindle are regulated by a series of spindle-associated proteins, which exhibit unique expression level variations and specific localization in oocytes. Proteomic analysis revealed that among many representative spindle-associated proteins, the expression level of nucleolar and spindle-associated protein 1 (NUSAP1) significantly increased after meiotic resumption, with a magnitude of change higher than that of other proteins. However, the role of NUSAP1 during oocyte meiosis maturation has not been reported. Here, we report that NUSAP1 is distributed within the cell nucleus during the germinal vesicle (GV) oocytes with non-surrounded nucleolus stage and is not enriched in the nucleus during the GV-surrounded nucleolus stage. Interestingly, NUSAP1 forms distinct granular aggregates near the spindle poles during the prophase of the first meiotic division (Pro-MI), metaphase I, and anaphase I/telophase I stages. Nusap1 depletion leads to chromosome misalignment, increased aneuploidy, and abnormal spindle assembly, particularly a decrease in spindle pole width. Correspondingly, RNA-seq analysis revealed significant suppression of the "establishment of spindle orientation" signaling pathway. Additionally, the attenuation of F-actin in NUSAP1-deficient oocytes may affect the asymmetric division process. Gene ontology analysis of NUSAP1 interactomes, identified through mass spectrometry here, revealed significant enrichment for RNA binding. As an RNA-binding protein, NUSAP1 is likely involved in the regulation of messenger RNA homeostasis by influencing the dynamics of processing (P)-body components. Overall, our results demonstrate the critical importance of precise regulation of NUSAP1 expression levels and protein localization for maintaining mouse oocyte meiosis.
Assuntos
Oogênese , Proteômica , Animais , Camundongos , Meiose , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismoRESUMO
RESEARCH QUESTION: What is the pregnancy and neonatal outcomes of an interpretable artificial intelligence (AI) model for embryo selection in a prospective clinical trial? DESIGN: This single-centre prospective cohort study was carried out from October 2021 to March 2022. A total of 330 eligible patients were assigned to their preferred groups, with 250 patients undergoing a fresh single-blastocyst transfer cycle after the exclusion criteria had been applied. For the AI-assisted group (AAG), embryologists selected the embryos for transfer based on the ranking recommendations provided by an interpretable AI system, while with the manual group, embryologists used the Gardner grading system to make their decisions. RESULTS: The implantation rate was significantly higher in the AAG than the manual group (80.87% versus 68.15%, Pâ¯=â¯0.022). No significant difference was found in terms of monozygotic twin rate, miscarriage rate, live birth rate and ectopic pregnancy rate between the groups. Furthermore, there was no significant difference in terms of neonatal outcomes, including gestational weeks, premature birth rate, birth height, birthweight, sex ratio at birth and newborn malformation rate. The consensus rate between the AI and retrospective analysis by the embryologists was significantly higher for good-quality embryos (i.e. grade 4BB or higher) versus poor-quality embryos (i.e. less than 4BB) (84.71% versus 25%, P < 0.001). CONCLUSIONS: These prospective trial results suggest that the proposed AI system could effectively help embryologists to improve the implantation rate with single-blastocyst transfer compared with traditional manual evaluation methods.
Assuntos
Inteligência Artificial , Transferência Embrionária , Feminino , Humanos , Recém-Nascido , Gravidez , Blastocisto , Transferência Embrionária/métodos , Taxa de Gravidez , Estudos Prospectivos , Estudos Retrospectivos , MasculinoRESUMO
Genomic abnormalities are strongly associated with cancer and infertility. In this study, we develop a simple and efficient method - multiple genetic abnormality sequencing (MGA-Seq) - to simultaneously detect structural variation, copy number variation, single-nucleotide polymorphism, homogeneously staining regions, and extrachromosomal DNA (ecDNA) from a single tube. MGA-Seq directly sequences proximity-ligated genomic fragments, yielding a dataset with concurrent genome three-dimensional and whole-genome sequencing information, enabling approximate localization of genomic structural variations and facilitating breakpoint identification. Additionally, by utilizing MGA-Seq, we map focal amplification and oncogene coamplification, thus facilitating the exploration of ecDNA's transcriptional regulatory function.