Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 942
Filtrar
1.
Sci Total Environ ; 951: 175460, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137841

RESUMO

Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.

2.
Quant Imaging Med Surg ; 14(8): 5473-5489, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39143997

RESUMO

Background: Synthetic magnetic resonance imaging (SyMRI) is a fast, standardized, and robust novel quantitative technique that has the potential to circumvent the subjectivity of interpretation in prostate multiparametric magnetic resonance imaging (mpMRI) and the limitations of existing MRI quantification techniques. Our study aimed to evaluate the potential utility of SyMRI in the diagnosis and aggressiveness assessment of prostate cancer (PCA). Methods: We retrospectively analyzed 309 patients with suspected PCA who had undergone mpMRI and SyMRI, and pathologic results were obtained by biopsy or PCA radical prostatectomy (RP). Pathological types were classified as PCA, benign prostatic hyperplasia (BPH), or peripheral zone (PZ) inflammation. According to the Gleason Score (GS), PCA was divided into groups of intermediate-to-high risk (GS ≥4+3) and low-risk (GS ≤3+4). Patients with biopsy-confirmed low-risk PCA were further divided into upgraded and nonupgraded groups based on the GS changes of the RP results. The values of the apparent diffusion coefficient (ADC), T1, T2 and proton density (PD) of these lesions were measured on ADC and SyMRI parameter maps by two physicians; these values were compared between PCA and BPH or inflammation, between the intermediate-to-high-risk and low-risk PCA groups, and between the upgraded and nonupgraded PCA groups. The risk factors affecting GS grades were identified via univariate analysis. The effects of confounding factors were excluded through multivariate logistic regression analysis, and independent predictive factors were calculated. Subsequently, the ADC+Sy(T2+PD) combined models for predicting PCA risk grade or GS upgrade were constructed through data processing analysis. The diagnostic performance of each parameter and the ADC+Sy(T2+PD) model was analyzed. The calibration curve was calculated by the bootstrapping internal validation method (200 bootstrap resamples). Results: The T1, T2, and PD values of PCA were significantly lower than those of BPH or inflammation (P≤0.001) in both the PZ or transitional zone. Among the 178 patients with PCA, intermediate-to-high-risk PCA group had significantly higher T1, T2, and PD values but lower ADC values compared with the low-risk group (P<0.05), and the diagnostic efficacy of each single parameter was similar (P>0.05). The ADC+Sy(T2+PD) model showed the best performance, with an area under the curve (AUC) 0.110 [AUC =0.818; 95% confidence interval (CI): 0.754-0.872] higher than that of ADC alone (AUC =0.708; 95% CI: 0.635-0.774) (P=0.003). Among the 68 patients initially classified as PCA in the low-risk group by biopsy, PCA in the postoperative upgraded GS group had significantly higher T1, T2, and PD values but lower ADC values than did those in the nonupgraded group (P<0.01). In addition, the ADC+Sy(T2+PD) model better predicted the upgrade of GS, with a significant increase in AUC of 0.204 (AUC =0.947; 95% CI: 0.864-0.987) compared with ADC alone (AUC =0.743; 95% CI: 0.622-0.841) (P<0.001). Conclusions: Quantitative parameters (T1, T2, and PD) derived from SyMRI can help differentiate PCA from non-PCA. Combining SyMRI parameters with ADC significantly improved the ability to differentiate between intermediate-to-high risk PCA from low-risk PCA and could predict the upgrade of low-risk PCA as confirmed by biopsy.

3.
Phytochemistry ; 228: 114229, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127395

RESUMO

Scoparodane C (1), a diterpenoid with a rare 3,4-seco-3-nor-2,11-epoxy-ent-clerodane scaffold, was obtained from the aerial parts of Isodon scoparius, along with isocopariusines A-E (2-6), five ent-clerodanoids featuring a 5/6-fused ring system, and isocopariusines F-H (7-9), three common ent-clerodanoids. The structures of these previously undescribed compounds were established by a combination of spectroscopic analysis, X-ray diffraction, chemical derivatization, and quantum chemical calculation. Remarkably, isocopariusine B (3) showed strong resistance reversal activity against fluconazole-resistant Candida albicans.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39105431

RESUMO

PURPOSE: This study aimed to clarify the characteristics of delaminated rotator cuff tears (RCTs) and evaluate the clinical outcomes of a modified arthroscopic en masse suture bridge repair for delaminated RCTs. METHODS: Patients with full-thickness RCTs, who underwent arthroscopic suture bridge repair with a minimum 2-year follow-up, were retrospectively reviewed. Patients were categorized into two groups based on the presence of delamination. Delaminated RCTs were treated using a modified en masse suture bridge technique, while nondelaminated RCTs received a conventional suture bridge technique. Preoperative and postoperative Constant scores and American Shoulder and Elbow Surgeons (ASES) scores were determined to evaluate clinical outcomes. Postoperative magnetic resonance imaging (MRI) was carried out to identify the integrity and retear of the repaired rotator cuff. RESULTS: A total of 172 patients were included in our study cohort, in which 67 (39%) delaminated RCTs were confirmed intraoperatively. The prevalence of delamination was significantly higher in large tears (53/102, 52%) compared to medium tears (14/70, 20%) (p < 0.001). No significant differences in age (n.s.) or gender (n.s.) were observed between the two groups. Both groups showed significant improvements in Constant and ASES scores postoperatively (both p < 0.001), with no significant differences between the groups (n.s.). The retear rates were 2/67 (3.0%) in the delamination group and 3/105 (2.9%) in the nondelamination group, showing no significant difference (n.s.). CONCLUSIONS: The modified arthroscopic en masse suture bridge technique was effective for repairing delaminated RCTs, yielding favourable clinical outcomes comparable to those of nondelaminated tears. LEVEL OF EVIDENCE: Level IV.

5.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131393

RESUMO

There are multiple independent genetic signals at the Ras-responsive element binding protein 1 (RREB1) locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of RREB1 in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss in vivo remains unknown. Here, we show that male and female global heterozygous knockout (Rreb1 +/-) mice have reduced body length, weight, and fat mass on high-fat diet. Rreb1+/- mice have sex- and diet-specific decreases in adipose tissue and adipocyte size; male mice on high-fat diet had larger gonadal adipocytes, while males on standard chow and females on high-fat diet had smaller, more insulin sensitive subcutaneous adipocytes. Mouse and human precursor cells lacking RREB1 have decreased adipogenic gene expression and activated transcription of genes associated with osteoblast differentiation, which was associated with Rreb1 +/- mice having increased bone mineral density in vivo. Finally, human carriers of RREB1 T2D protective alleles have smaller adipocytes, consistent with RREB1 loss-of-function reducing diabetes risk.

6.
Nat Prod Bioprospect ; 14(1): 45, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143298

RESUMO

Three new ent-kaurane diterpenoids, silvaticusins A-C (1-3), along with a new ent-kaurane dimer silvaticusin D (4) were isolated from the aerial parts of Isodon silvaticus. The structures of these new compounds were established mainly by comprehensive analysis of their NMR and MS data. The absolute configuration of compounds 1 and 4 were determined using a single-crystal X-ray diffraction and computational methods, respectively. Compounds 2 and 3 were found to exhibit remarkable cytotoxic effects against five human tumor cell lines (HL-60, A-549, SMMC-7721, MDA-MB-231, and SW-480), with IC50 values spanning from 1.27 ± 0.08 to 7.52 ± 0.33 µM.

7.
Diagnostics (Basel) ; 14(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125509

RESUMO

In this study, we aimed to validate a novel light field virtual reality (LFVR) system for estimating refractive errors in the human eye. Fifty participants with an average age of 22.12 ± 2.2 years (range 20-30 years) were enrolled. The present study compared spherical equivalent (SE) and focal line measurements (F1 and F2) obtained by the LFVR system with those obtained by established methods, including closed-field and open-field autorefractors, retinoscopy, and subjective refraction. The results showed substantial agreement between the LFVR system and the traditional methods, with intraclass correlation coefficients (ICC) for SE ranging from 82.7% to 86.7% (p < 0.01), and for F1 and F2 from 80.7% to 86.4% (p < 0.01). Intra-repeatability for F1 and F2 demonstrated strong agreement, with ICC values of 88.8% and 97.5%, respectively. These findings suggest that the LFVR system holds potential as a primary tool for refractive error measurement in optical care, offering high agreement and repeatability compared to conventional methods.

8.
BMC Musculoskelet Disord ; 25(1): 552, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014409

RESUMO

BACKGROUND: To evaluate the effectiveness of a sequential internal fixation strategy and intramedullary nailing with plate augmentation (IMN/PA) for bone reconstruction in the management of infected femoral shaft defects using the Masquelet technique. METHODS: We performed a retrospective descriptive cohort study of 21 patients (mean age, 36.4 years) with infected bone defects of the femoral shaft treated by the Masquelet technique with a minimum follow-up of 18 months after second stage. After aggressive debridement, temporary stabilisation (T1) was achieved by an antibiotic-loaded bone cement spacer and internal fixation with a bone cement-coated locking plate. At second stage (T2), the spacer and the locking plate were removed following re-debridement, and IMN/PA was used as definitive fixation together with bone grafting. We evaluated the following clinical outcomes: infection recurrence, bone union time, complications, and the affected limb's knee joint function. RESULTS: The median and quartiles of bone defect length was 7 (4.75-9.5) cm. Four patients required iterative debridement for infection recurrence after T1. The median of interval between T1 and T2 was 10 (9-19) weeks. At a median follow-up of 22 (20-27.5) months, none of the patients experienced recurrence of infection. Bone union was achieved at 7 (6-8.5) months in all patients, with one patient experiencing delayed union at the distal end of bone defect due to screws loosening. At the last follow-up, the median of flexion ROM of the knee joint was 120 (105-120.0)°. CONCLUSIONS: For infected femoral shaft bone defects treated by the Masquelet technique, sequential internal fixation and IMN/PA for the reconstruction can provide excellent mechanical stability, which is beneficial for early functional exercise and bone union, and does not increase the rate of infection recurrence.


Assuntos
Pinos Ortopédicos , Placas Ósseas , Desbridamento , Fraturas do Fêmur , Fixação Intramedular de Fraturas , Humanos , Masculino , Estudos Retrospectivos , Feminino , Adulto , Fraturas do Fêmur/cirurgia , Pessoa de Meia-Idade , Desbridamento/métodos , Fixação Intramedular de Fraturas/métodos , Fixação Intramedular de Fraturas/instrumentação , Adulto Jovem , Resultado do Tratamento , Transplante Ósseo/métodos , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Seguimentos , Cimentos Ósseos/uso terapêutico , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Fêmur/cirurgia , Adolescente
9.
Genes Dis ; 11(5): 101061, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39071110

RESUMO

Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.

10.
Front Nutr ; 11: 1387956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962446

RESUMO

Introduction: Human milk is widely acknowledged as the optimal food for infant aged 0 ~ 6 months. While there has been extensive documentation on the mineral and trace element composition of human milk, results on the relationship between mineral content and infant growth remain mixed. This cross-sectional study aims to explore human milk mineral patterns and to investigate associations between human milk mineral patterns, human milk metabolomic profile and infant growth. Methods: A total of 200 breast milk samples from seven cities in China was included. Human milk mineral and trace elements was detected by inductively coupled plasma mass spectrometer (ICP-MS). K-means cluster analysis was utilized to derived human milk mineral patterns. Untargeted human milk metabolomic profiles was determined using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Differences of infant growth rate and metabolomic profiles were then compared across patterns identified. Results: Three human milk mineral patterns were identified. Cluster I was characterized as the highest levels of potassium, magnesium and calcium, while the lowest levels of copper, zinc, manganese and selenium. Cluster II showed the most abundant sodium, iron, zinc, manganese and selenium. Cluster III had the lowest levels of sodium, potassium, magnesium, iron and calcium. Infants of cluster I showed significantly higher length-for-age z score (0.60 ± 2.03, p = 0.03). Compared with other clusters, samples of cluster I showed lower expression of metabolites of arachidonic acid (ARA) and nicotinate and nicotinamide metabolism pathway. Discussion: A human milk mineral pattern was identified which is related to increased infant growth rate and altered metabolic signature. Future work is needed to understand these human milk patterns in terms of biologic mechanisms and generalization to other populations.

11.
Org Lett ; 26(29): 6203-6208, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39004824

RESUMO

Isoxerophilusins A (1) and B (2), two unprecedented diterpene heterodimers biogenetically from ent-atisanes and abietanes, were isolated from the rhizomes of Isodon xerophilus. Their structures were determined by extensive spectroscopic analysis and single-crystal X-ray diffraction. Selective esterification of 1 generated 11 new derivatives. All derivatives showed excellent α-glucosidase inhibitory activity in comparison to acarbose. Compounds 12 and 13 demonstrated significant inhibition against α-glucosidase with IC50 values of 4.92 and 3.83 µM, respectively.


Assuntos
Diterpenos , Inibidores de Glicosídeo Hidrolases , Isodon , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , alfa-Glucosidases/metabolismo , Estrutura Molecular , Isodon/química , Dimerização , Cristalografia por Raios X , Relação Estrutura-Atividade , Rizoma/química
12.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959864

RESUMO

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Assuntos
Diabetes Mellitus Tipo 2 , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Proteômica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Pessoa de Meia-Idade , Nutrientes/metabolismo , Adulto , Glucose/metabolismo , Idoso , Ácidos Graxos/metabolismo
13.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948734

RESUMO

Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.

14.
Nat Chem ; 16(8): 1250-1260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38918581

RESUMO

Providing affordable, safe drinking water and universal sanitation poses a grand societal challenge. Here we developed atomically dispersed Au on potassium-incorporated polymeric carbon nitride material that could simultaneously boost photocatalytic generation of ·OH and H2O2 with an apparent quantum efficiency over 85% at 420 nm. Potassium introduction into the poly(heptazine imide) matrix formed strong K-N bonds and rendered Au with an oxidation number close to 0. Extensive experimental characterization and computational simulations revealed that the low-valent Au altered the materials' band structure to trap highly localized holes produced under photoexcitation. These highly localized holes could boost the 1e- water oxidation reaction to form highly oxidative ·OH and simultaneously dissociate the hydrogen atom in H2O, which greatly promoted the reduction of oxygen to H2O2. The photogenerated ·OH led to an efficiency enhancement for visible-light-response superhydrophilicity. Furthermore, photo-illumination in an onsite fixed-bed reactor could disinfect water at a rate of 66 L H2O m-2 per day.

15.
Angew Chem Int Ed Engl ; : e202408300, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897926

RESUMO

Chemical photoswitches have become a widely used approach for the remote control of biological functions with spatiotemporal precision. Several molecular scaffolds have been implemented to improve photoswitch characteristics, ranging from the nature of the photoswitch itself (e.g. azobenzenes, dithienylethenes, hemithioindigo) to fine-tuning of aromatic units and substituents. Herein, we present deuterated azobenzene photoswitches as a general means of enhancing the performance of photopharmacological molecules. Deuteration can improve azobenzene performance in terms of light sensitivity (higher molar extinction coefficient), photoswitch efficiency (higher photoisomerization quantum yield), and photoswitch kinetics (faster macroscopic rate of photoisomerization) with minimal alteration to the underlying structure of the photopharmacological ligand. We report synthesized deuterated azobenzene-based ligands for the optimized optical control of ion channel and G protein-coupled receptor (GPCR) function in live cells, setting the stage for the straightforward, widespread adoption of this approach.

16.
J Am Chem Soc ; 146(31): 21401-21416, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38922296

RESUMO

Long-acting drug delivery systems are promising platforms to improve patient adherence to medication by delivering drugs over sustained periods and removing the need for patients to comply with oral regimens. This research paper provides a proof-of-concept for the development of a new optimized in situ forming injectable depot based on a tetrabenzylamine-tetraglycine-d-lysine-O-phospho-d-tyrosine peptoid-D-peptide formulation ((NPhe)4GGGGk(AZT)y(p)-OH). The chemical versatility of the peptoid-peptide motif allows low-molecular-weight drugs to be precisely and covalently conjugated. After subcutaneous injection, a hydrogel depot forms from the solubilized peptoid-peptide-drug formulation in response to phosphatase enzymes present within the skin space. This system is able to deliver clinically relevant concentrations of a model drug, the antiretroviral zidovudine (AZT), for 35 days in Sprague-Dawley rats. Oscillatory rheology demonstrated that hydrogel formation began within ∼30 s, an important characteristic of in situ systems for reducing initial drug bursts. Gel formation continued for up to ∼90 min. Small-angle neutron scattering data reveal narrow-radius fibers (∼0.78-1.8 nm) that closely fit formation via a flexible cylinder elliptical model. The inclusion of non-native peptoid monomers and D-variant amino acids confers protease resistance, enabling enhanced biostability to be demonstrated in vitro. Drug release proceeds via hydrolysis of an ester linkage under physiological conditions, releasing the drug in an unmodified form and further reducing the initial drug burst. Subcutaneous administration of (NPhe)4GGGGk(AZT)y(p)-OH to Sprague-Dawley rats resulted in zidovudine blood plasma concentrations within the 90% maximal inhibitory concentration (IC90) range (30-130 ng mL-1) for 35 days.


Assuntos
Hidrogéis , Peptoides , Ratos Sprague-Dawley , Hidrogéis/química , Animais , Peptoides/química , Ratos , Sistemas de Liberação de Medicamentos , Zidovudina/química , Zidovudina/administração & dosagem , Zidovudina/farmacologia , Peptídeos/química , Injeções Subcutâneas
17.
Artigo em Inglês | MEDLINE | ID: mdl-38833396

RESUMO

The global trend of population aging presents an urgent challenge in ensuring the safety and well-being of elderly individuals, especially those living alone due to various circumstances. A promising approach to this challenge involves leveraging Human Action Recognition (HAR) by integrating data from multiple sensors. However, the field of HAR has struggled to strike a balance between accuracy and response time. While technological advancements have improved recognition accuracy, complex algorithms often come at the expense of response time. To address this issue, we introduce an innovative asynchronous detection method called Rapid Response Elderly Safety Monitoring (RESAM), which relies on progressive hierarchical action recognition and multi-sensor data fusion. Through initial analysis of inertial sensor data using Kernel Principal Component Analysis (KPCA) and multi-class classifiers, we efficiently reduce processing time and lower the false-negative rate (FNR). The inertial sensor identification serves as a pre-filter, enabling the identification of filtered abnormal signals. Decision-level data fusion is then executed, incorporating skeleton image analysis based on ResNet and the inertial sensor data from the initial step. This integration enables the accurate differentiation between normal and abnormal behaviors. The RESAM method achieves an impressive 97.4% accuracy on the UTD-MHAD database with a minimal delay of 1.22 seconds. On our internally collected database, the RESAM system attains an accuracy of 99%, ranking among the most accurate state-of-the-art methods available. These results underscore the practicality and effectiveness of our approach in meeting the critical demand for swift and precise responses in healthcare scenarios.


Assuntos
Algoritmos , Análise de Componente Principal , Humanos , Idoso , Masculino , Feminino , Reconhecimento Automatizado de Padrão/métodos , Segurança , Idoso de 80 Anos ou mais
18.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860546

RESUMO

Pegmolesatide, a synthetic, polyethylene-glycolylated, peptide-based erythropoiesis-stimulating agent (ESA), has been recently approved in China. Pegmolesatide is derived from the structure of endogenous erythropoietin (EPO), a natural product in mammals. This study compared the in vitro effects and selectivity of pegmolesatide to those of recombinant EPO and carbamylated EPO (CEPO) through computer-aided analyses and biological tests. The findings indicate that pegmolesatide exhibited the same stimulating effect on erythropoiesis as EPO with fewer side effects than EPO and CEPO.

19.
Nat Prod Bioprospect ; 14(1): 37, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861197

RESUMO

Cyclobutanes are distributed widely in a large class of natural products featuring diverse pharmaceutical activities and intricate structural frameworks. The [2 + 2] cycloaddition is unequivocally the primary and most commonly used method for synthesizing cyclobutanes. In this review, we have summarized the application of the [2 + 2] cycloaddition with different reaction mechanisms in the chemical synthesis of selected cyclobutane-containing natural products over the past decade.

20.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886669

RESUMO

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Assuntos
Colite Ulcerativa , Modelos Animais de Doenças , Mucinas , Animais , Humanos , Masculino , Camundongos , Colite Ulcerativa/metabolismo , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Sulfato de Dextrana , Regulação para Baixo , Glicosilação , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Mucinas/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA