Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Pharmacol Sin ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862818

RESUMO

Diabetic cardiomyopathy (DCM) is a complication of diabetes mellitus characterized by heart failure and cardiac remodeling. Previous studies show that tetrahydroberberrubine (THBru) retrogrades cardiac aging by promoting PHB2-mediated mitochondrial autophagy and prevents peritoneal adhesion by suppressing inflammation. In this study we investigated whether THBru exerted protective effect against DCM in db/db mice and potential mechanisms. Eight-week-old male db/db mice were administered THBru (25, 50 mg·kg-1·d-1, i.g.) for 12 weeks. Cardiac function was assessed using echocardiography. We showed that THBru administration significantly improved both cardiac systolic and diastolic function, as well as attenuated cardiac remodeling in db/db mice. In primary neonatal mouse cardiomyocytes (NMCMs), THBru (20, 40 µM) dose-dependently ameliorated high glucose (HG)-induced cell damage, hypertrophy, inflammatory cytokines release, and reactive oxygen species (ROS) production. Using Autodock, surface plasmon resonance (SPR) and DARTS analyses, we revealed that THBru bound to the domain of the receptor for advanced glycosylation end products (RAGE), subsequently leading to inactivation of the PI3K/AKT/NF-κB pathway. Importantly, overexpression of RAGE in NMCMs reversed HG-induced inactivation of the PI3K/AKT/NF-κB pathway and subsequently counteracted the beneficial effects mediated by THBru. We conclude that THBru acts as an inhibitor of RAGE, leading to inactivation of the PI3K/AKT/NF-κB pathway. This action effectively alleviates the inflammatory responses and oxidative stress in cardiomyocytes, ultimately leading to ameliorated DCM.

2.
Neural Netw ; 175: 106319, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640698

RESUMO

To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.


Assuntos
Aprendizado Profundo , Eletroencefalografia , Epilepsia , Gravação em Vídeo , Humanos , Eletroencefalografia/métodos , Gravação em Vídeo/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adolescente , Redes Neurais de Computação , Adulto Jovem , Criança
3.
Sci Total Environ ; 923: 171376, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432388

RESUMO

Seasonal freezing of waters occurs during winter in cold regions. Bromate ( [Formula: see text] ) is a disinfection by-product generated during water treatment, its interaction with emerging contaminants may be affected by freezing. Nitrite ( [Formula: see text] ) is widely distributed in the environment, whereas its effect on the interaction of emerging contaminants and [Formula: see text] in ice may have been overlooked. Herein carbamazepine (CBZ) was selected as a model emerging contaminant to elucidate the role of reactive nitrogen species (RNS) in contaminant transformation during the reduction of [Formula: see text] by [Formula: see text] in ice. Results indicated that freezing significantly enhanced CBZ degradation by [Formula: see text] . The CBZ degradation by [Formula: see text] and [Formula: see text] in ice was 25.4 %-27.8 % higher than that by [Formula: see text] . Contributions of hydroxyl radical (•OH), bromine radical (•Br), and RNS to CBZ degradation in freezing/dark or sunlight systems were 8.1 % or 15.9 %, 25.4 % or 7.2 %, and 66.5 % or 76.9 %, respectively. Most CBZ was degraded by RNS generated during the reduction of [Formula: see text] by [Formula: see text] in ice, resulting in 16.4 % of transformation products being nitro-containing byproducts. Hybrid toxicity of CBZ/ [Formula: see text] / [Formula: see text] system was reduced effectively after the freezing-sunlight process. This study can provide new insights into the environmental fate of emerging contaminants, [Formula: see text] , and [Formula: see text] in cold regions.

4.
Aging Cell ; 23(3): e14063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098220

RESUMO

Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.


Assuntos
Cardiopatias , MicroRNAs , Camundongos , Humanos , Animais , Idoso , NAD/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Senescência Celular/genética , Camundongos Transgênicos , Poli(ADP-Ribose) Polimerase-1/genética
5.
J Environ Manage ; 347: 119093, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783080

RESUMO

Eutrophic lakes are a major source of the atmospheric greenhouse gas methane (CH4), and CH4 ebullition emissions from inland lakes have important implications for the carbon cycle. However, the spatio-temporal heterogeneity of CH4 ebullition emission and its influencing factors in shallow eutrophic lakes of arid and semi-arid regions remain unclear. This study aimed to determine the mechanism of CH4 emission via eutrophication in Lake Ulansuhai, a large shallow eutrophic lake in a semi-arid region of China.To this end, monthly field surveys were conducted from May to October 2021, and gas chromatography was applied using the headspace equilibrium technique with an inverted funnel arrangement. The total CH4 fluxes ranged from 0.102 mmol m-2 d-1 to 59.296 mmol m-2 d-1 with an average value of 4.984 ± 1.82 mmol m-2 d-1. CH4 ebullition emissions showed significant temporal and spatial variations. The highest CH4 ebullition emission was observed in July with a grand mean of 9.299 mmol m-2 d-1, and the lowest CH4 ebullition emissions occurred in October with an average of 0.235 mmol m-2 d-1. Among seven sites (S1-S7), the maximum (3.657 mmol m-2 d-1) and minimum (1.297 mmol m-2 d-1). CH4 ebullition emissions were observed at S2 and S7, respectively. As the main route of CH4 emission to the atmosphere in Lake Ulansuhai, the CH4 ebullition flux during May to October accounted for 69% of the total CH4 flux. Statistical analysis showed that CH4 ebullition was positively correlated with temperature (R = 0.391, P < 0.01) and negatively correlated with air pressure (R = 0.286, P < 0.00). Temperature and air pressure were found to strongly regulate the production and oxidation of CH4. Moreover, nutritional status indicators such as TP and NH4+-N significantly affect CH4 ebullition emissions (R = 0.232, P < 0.01; R = -0.241, P < 0.01). This study reveals the influencing factors of CH4 ebullition emission in Lake Ulansuhai, and provides theoretical reference and data support for carbon emission from eutrophic lakes. Nevertheless, research on eutrophic shallow lakes needs to be further strengthened. Future research should incorporate improved flux measurement techniques with process-based models to improve the accuracy from regional to large-scale estimation of CH4 emissions and clarify the carbon budget of aquatic ecosystems. In this manner, the understanding and predictability of CH4 ebullition emission from shallow lakes can be improved.


Assuntos
Lagos , Metano , Metano/análise , Ecossistema , China , Carbono/análise
6.
J Environ Manage ; 344: 118314, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343475

RESUMO

Although saline aquatic ecosystems are significant emitters of greenhouse gases (GHGs), dynamic changes in GHGs at the sediment-water interface remain unclear. The present investigation carried out a total of four sampling campaigns in Daihai Lake, which is a eutrophic saline lake situated in a semi-arid area of northern China. The aim of this study was to investigate the spatio-temporal dynamics of carbon dioxide (CO2) and methane (CH4) fluxes at the sediment-water interface and the influencing factors. The mean concentrations of porewater CO2 and CH4 were 44.98 ± 117.99 µmol L-1 and 124.36 ± 97.00 µmol L-1, far exceeding those in water column of 11.14 ± 2.16 µmol L-1 and 0.33 ± 0.23 µmol L-1, respectively. The CO2 and CH4 fluxes at the sediment-water interface (FS-WCO2 and FS-WCH4) exhibited significant spatial and temporal variations, with mean values of 9.24 ± 13.84 µmol m-2 d-1 and 3.53 ± 4.36 µmol m-2 d-1, respectively, indicating that sediment is the source of CO2 and CH4 in the water column. However, CO2 and CH4 fluxes were much lower than those measured at the water-air interface in a companion study (17.54 ± 14.54 mmol m-2d-1 and 0.50 ± 0.50 mmol m-2d-1, respectively), indicating that the diffusive flux of gases at the sediment-water interface was not the primary source of CO2 and CH4 emissions to the atmosphere. Regression and correlation analyses revealed that salinity (Sal) and nutrients were the most influential factors on porewater gas concentrations, and that gas fluxes increased with increasing gas concentrations and porosity. The microbial activity of sediment is greatly affected by nutrients and Sal. Additionally, Sal has the ability to regulate biogeochemical processes, thereby regulating GHG emissions. The present investigation addresses the research gap concerning GHG emissions from sediments of eutrophic saline lakes. The study suggests that controlling the eutrophication and salinization of lakes could be a viable strategy for reducing carbon emissions from lakes. However, further investigations are required to establish more conclusive results.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Lagos/análise , Ecossistema , Água/análise , Gases de Efeito Estufa/análise , Metano/análise , China
7.
Sci Total Environ ; 894: 165014, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343881

RESUMO

Ice plays a crucial role in contaminant transformation in seasonally ice-covered waters. In this study, the characteristics and mechanisms of an emerging contaminant oxcarbazepine (OXC) degradation by a disinfection by-product bromate ( [Formula: see text] ) in ice were explored via combined experiments and theoretical calculations. Results showed that 74.0 % and 86.4 % of OXC was degraded by [Formula: see text] in ice after 140 min in dark and 120 min under solar irradiation, respectively, while the reaction was negligible in water. The oxidation-reduction potential of [Formula: see text] solution at 1000 µmol L-1 was 56.9 % higher than that at 50 µmol L-1. The oxidation-reduction potential of [Formula: see text] solution at pH 2 was 14.8 %-109.5 % higher than those at other pH values. Enhanced OXC degradation by [Formula: see text] in ice could be attributed to increased [Formula: see text] oxidation capacity resulting from locally elevated [Formula: see text] and H+ concentrations. Hypobromous acid (HOBr), •OH, and Br• generated by direct photolysis under solar irradiation further promoted the OXC degradation in ice. Br• formed by the direct photolysis of accumulated HOBr under solar irradiation caused the generation of bromine-containing degradation products. Bromine-containing degradation products possessed higher potential toxicities, which could contribute to increase the secondary pollution of water environment.

8.
J Hazard Mater ; 457: 131793, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37302190

RESUMO

Ice is a crucial medium in cold regions and plays an important role in the transformation of pollutants. When waters receiving treated wastewater freeze in cold regions during winter, the emerging contaminant carbamazepine (CBZ) and the disinfection by-product bromate ( [Formula: see text] ) can coexist in ice. However, their interaction in ice remains poorly understood. Here, CBZ degradation by [Formula: see text] in ice was investigated via a simulation experiment. Results showed that 96% of CBZ was degraded by [Formula: see text] after 90 min in ice in dark, while the degradation was negligible in water. The time required for nearly 100% CBZ degradation by [Formula: see text] in ice under solar irradiation was 22.2% shorter than in dark. The production of hypobromous acid (HOBr) was responsible for the gradually accelerated CBZ degradation rate in ice. The HOBr generation time in ice under solar irradiation was 50% shorter than in dark. The formation of HOBr and hydroxyl radical by the direct photolysis of [Formula: see text] under solar irradiation enhanced the CBZ degradation in ice. CBZ was mainly degraded by deamidation, decarbonylation, decarboxylation, hydroxylation, molecular rearrangement, and oxidation reactions. Furthermore, 18.5% of degradation products exhibited lower toxicity than their parent CBZ. This work can provide new insights into the environmental behaviors and fate of emerging contaminants in cold regions.

9.
Eur J Pharmacol ; 954: 175803, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37295764

RESUMO

Peritoneal adhesion is a common abdominal surgical complication that induces abdominal haemorrhage, intestinal obstruction, infertility, and so forth. The high morbidity and recurrence rate of this disease indicate the need for novel therapeutic approaches. Here, we revealed the protective roles of tetrahydroberberrubine (THBru), a novel derivative of berberine (BBR), in preventing peritoneal adhesion and identified its underlying mechanism in vivo and in vitro. Abrasive surgery was used to create a peritoneal adhesion rat model. We found that THBru administration markedly ameliorated peritoneal adhesion, as indicated by a lowered adhesion score and ameliorated caecal tissue damage. By comparison, THBru exhibited more potent anti-adhesion effects than BBR at the same dose. Mechanistically, THBru inhibited inflammation and extracellular matrix (ECM) accumulation in the microenvironment of adhesion tissue. THBru suppressed the expression of inflammatory cytokines including interleukin-1ß (IL-1ß), IL-6, transforming growth factor ß (TGF-ß), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1), by regulating the transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) and TAK1/nuclear factor κB (NF-κB) signaling pathways. However, THBru promoted the activation of MMP-3 by directly blocking the TIMP-1 activation core and subsequently decreased collagen deposition. Taken together, this study identifies THBru as an effective anti-adhesion agent that regulates diverse mechanisms, thereby outlining its potential therapeutic implications for the treatment of peritoneal adhesion.


Assuntos
Berberina , Ratos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Inflamação/tratamento farmacológico , NF-kappa B/metabolismo , Fator de Crescimento Transformador beta/uso terapêutico , Matriz Extracelular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo
10.
J Transl Med ; 21(1): 97, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755320

RESUMO

BACKGROUND: Atherosclerosis is driven by synergistic interactions between pathological biomechanical and lipid metabolic factors. Long noncoding RNAs (LncRNAs) have been implicated in atherogenesis. The purpose of this study was to investigate the potential mechanism of lncRNA AI662270 on macrophage cholesterol transport in atherosclerosis. METHODS: Apolipoprotein E deficiency (ApoE-/-) mice were fed a high fat diet for 16 weeks to construct atherosclerotic model, and the mice were injected with recombinant lentivirus carrying AI662270 gene to overexpress AI662270. Macrophages were cleared by liposomal clondronate in vivo. Fundamental experiments and functional assays, hematoxylin and eosin staining, oil red O staining and others, were performed to evaluate the function of AI662270 on atherogenesis. Peritoneal macrophages were treated with oxidized low density lipoprotein (ox-LDL) to simulate in vitro model. Mechanism assays, RNA-interacting protein immunoprecipitation, RNA-protein pulldown and others, were performed to study the regulatory mechanism of AI662270 in macrophages. RESULTS: The novel AI662270 was mainly enriched in macrophages, but not in endothelial cells, smooth muscle cells and fibroblasts of mouse atherosclerotic lesions and was upregulated by ox-LDL. Overexpression of AI662270 resulted in lipid accumulation, larger atherosclerotic plaques and cardiac dysfunction in vivo. After macrophages were removed, the pro-atherogenic effect of AI662270 disappeared. Downregulation of AI662270 in macrophages protected against foam cell formation by potentiating cholesterol efflux and reducing intracellular total cholesterol. The opposite effect was observed in macrophage-specific AI662270-overexpressed cells in vitro. AI662270 bound to adenosine triphosphate-binding cassette transporter A1 (Abca1) responsible for regulating cholesterol efflux in macrophages. Forced expression of AI662270 in macrophages decreased Abca1 expression. The reverse occurred when expression of AI662270 was repressed. CONCLUSION: These findings reveal an essential role for AI662270 in atherosclerosis progression by regulating cholesterol efflux from macrophages.


Assuntos
Aterosclerose , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Colesterol/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/patologia , Macrófagos/metabolismo , Camundongos Knockout
11.
Water Res ; 222: 118916, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35921715

RESUMO

Shallow eutrophic lakes contribute disproportional to the emissions of CO2 and CH4 from inland waters. The processes that contribute to these fluxes, their environmental controls, and anthropogenic influences, however, are poorly constrained. Here, we studied the spatial variability and seasonal dynamics of CO2 and CH4 fluxes across the sediment-water interface, and their relationships to porewater nutrient concentrations in Lake Ulansuhai, a shallow eutrophic lake located in a semi-arid region in Northern China. The mean concentrations of CO2 and CH4 in porewater were 877.8 ± 31.0 µmol L-1 and 689.2 ± 45.0 µmol L-1, which were more than 50 and 20 times higher than those in the water column, respectively. The sediment was always a source of both gases for the water column. Porewater CO2 and CH4 concentrations and diffusive fluxes across the sediment-water interface showed significant temporal and spatial variations with mean diffusive fluxes of 887.3 ±124.7 µmol m-2 d-1 and 607.1 ± 68.0 µmol m-2 d-1 for CO2 and CH4, respectively. The temporal and spatial variations of CO2 and CH4 concentrations in porewater were associated with corresponding variations in dissolved organic carbon and dissolved nitrogen species. Temperature and dissolved organic carbon in surface porewater were the most important drivers of temporal variations in diffusive fluxes, whereas dissolved organic carbon and nitrogen were the main drivers of their spatial variations. Diffusive fluxes generally increased with increasing dissolved organic carbon and nitrogen in the porewater from the inflow to the outflow region of the lake. The estimated fluxes of both gases at the sediment-water interface were one order of magnitude lower than the emissions at the water surface, which were measured in a companion study. This indicates that diffusive fluxes across the sediment-water interface were not the main pathway for CO2 and CH4 emissions to the atmosphere. To improve the mechanistic understanding and predictability of greenhouse gas emissions from shallow lakes, future studies should aim to close the apparent gap in the CO2 and CH4 budget by combining improved flux measurement techniques with process-based modeling.


Assuntos
Dióxido de Carbono , Lagos , China , Metano/análise , Nitrogênio/análise , Estações do Ano , Água
12.
Environ Pollut ; 311: 119921, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973450

RESUMO

Distribution in ice is regarded as one of important transport modes for pollutants in seasonal freeze-up waters in cold regions. However, the distribution characteristics and mechanisms of fluorinated antibiotics as emerging contaminants during the water freezing process remain unclear. Here, florfenicol and norfloxacin were selected as model fluorinated antibiotics to investigate their ice-water distribution. Effects of antibiotic molecular structure on the distribution were explored through comparative studies with their non-fluorinated structural analogs. Results showed that phase changes during the ice growth process redistributed the antibiotics, with antibiotic concentrations in water 3.0-6.4 times higher than those in ice. The solute-rich boundary layer with a concentration gradient was presented at the ice-water interface and controlled by constitutional supercooling during the freezing process. The ice-water distribution coefficient (KIW) values of antibiotics increased by 34.8%-38.0% with a doubling of the cooling area. The solute distribution coefficient (Kbs) values of antibiotics at -20 °C were 65.6%-70.3% higher than at -10 °C. The KIW and Kbs values of all antibiotics were negatively correlated with their water solubilities. The fluorine substituents influenced the binding energies between antibiotics and ice, resulting in a 1.1-fold increase in the binding energy of norfloxacin on the ice surface relative to its structural analog pipemidic acid. The results provide a new insight into the transport behaviors of fluorinated pharmaceuticals in ice-water systems.


Assuntos
Gelo , Norfloxacino , Antibacterianos , Flúor , Congelamento , Tianfenicol/análogos & derivados
13.
IEEE Trans Cybern ; 52(10): 10328-10338, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33886484

RESUMO

Domain adaptation (DA) aims at facilitating the target model training by leveraging knowledge from related but distribution-inconsistent source domain. Most of the previous DA works concentrate on homogeneous scenarios, where the source and target domains are assumed to share the same feature space. Nevertheless, frequently, in reality, the domains are not consistent in not only data distribution but also the representation space and feature dimensions. That is, these domains are heterogeneous. Although many works have attempted to handle such heterogeneous DA (HDA) by transforming HDA to homogeneous counterparts or performing DA jointly with domain transformation, nearly all of them just concentrate on the feature and distribution alignment across domains, neglecting the structure and classification space preservation for domains themselves. In this work, we propose a novel HDA model, namely, heterogeneous classification space alignment (HCSA), which leverages knowledge from both the source samples and model parameters to the target. In HCSA, structure preservation, distribution, and classification space alignment are implemented, jointly with feature representation by transferring both the source-domain representation and model knowledge. Moreover, we design an alternating algorithm to optimize the HCSA model with guaranteed convergence and complexity analysis. In addition, the HCSA model is further extended with deep network architecture. Finally, we experimentally evaluate the effectiveness of the proposed method by showing its superiority to the compared approaches.

14.
Front Neurosci ; 15: 687053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421518

RESUMO

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two main types of dementia. We investigated the electroencephalogram (EEG) difference and clinical correlation in early-onset Alzheimer's disease (EOAD), and FTD using multimodal EEG analyses. EOAD had more severe EEG abnormalities than late-onset AD (LOAD). Group comparisons between EOAD and LOAD were also performed. METHODS: Thirty patients diagnosed with EOAD, nine patients with LOAD, and 14 patients with FTD (≤65 y) were recruited (2008.1-2020.2), along with 24 healthy controls (≤65 y, n = 18; >65 y, n = 6). Clinical data were reviewed. Visual EEG, EEG microstate, and spectral analyses were performed. RESULTS: Compared to controls, markedly increased mean microstate duration, reduced mean occurrence, and reduced global field power (GFP) peaks per second were observed in EOAD and FTD. We found increased durations of class B in EOAD and class A in FTD. EOAD had reduced occurrences in classes A, B, and C, while only class C occurrence was reduced in FTD. The visual EEG results did not differ between AD and FTD. Microstate B showed correlations with activities of daily living score (r = 0.780, p = 0.008) and cerebrospinal fluid (CSF) Aß42 (r = -0.833, p = 0.010) in EOAD. Microstate D occurrence was correlated with the CSF Aß42 level in FTD (r = 0.786, p = 0.021). Spectral analysis revealed a general slowing EEG, which may contribute to microstate dynamic loss. Power in delta was significantly higher in EOAD than in FTD all over the head. In addition, EOAD had a marked increased duration and decreased occurrence than late-onset AD (LOAD), with no group differences in visual EEG results. CONCLUSION: The current study found that EOAD and FTD had different EEG changes, and microstate had an association with clinical severity and CSF biomarkers. EEG microstate is more sensitive than visual EEG and may be useful for the differentiation between AD and FTD. The observations support that EEG can be a potential biomarker for the diagnosis and assessment of early-onset dementias.

15.
Front Neurol ; 12: 642669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194380

RESUMO

Introduction: It remains controversial whether the periodic discharges (PDs) pattern is an ictal or interictal phenomenon. The aims of the study are to apply time-frequency and power spectrum analysis to study the PDs pattern and prediction of seizures. Methods: We retrospectively searched continuous electroencephalography (cEEG) recordings to identify patients exhibiting the PDs pattern. Artifact-free cEEG segments demonstrating the PDs pattern with stable baselines were chosen for time-frequency and power spectrum analysis. Results: In total, 72 patients (1.3%) exhibited the PDs pattern, with a mean age 36.0 ± 20.7 years (range, 8-76 years). The median spectral power of PDs with a length of 60 s was 70.94 µV2 and that of PDs with a length of 20 s was 195.80 µV2. During follow-up, patients with spectral power of PDs of length 60 and 20 s lower than 28.65 and 36.09 µV2, respectively, exhibited no seizure. For predicting seizures, when the spectral power for PDs of 60 and 20 s equaled to 17.26 and 21.40 µV2, respectively, the diagnostic sensitivity was 100% and specificity was 86%. The locations of maximal spectral power of PDs, crude seizure onset zone (SOZ) judged from scalp EEG, and the most prominent regions of hyper- or hypo-metabolism on FDG-PET were congruent. Conclusions: Spectral power might be a candidate seizure marker of the PDs pattern. High spectral power predicted a high risk of seizures, and low spectral power was associated with a low risk of seizures.

16.
Water Res ; 201: 117363, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174729

RESUMO

Eutrophic lakes, especially shallow eutrophic lakes, disproportionately contribute to greenhouse gas (GHG) emissions. To investigate the effects of eutrophication on GHG dynamics, we conducted field measurements every three months from January 2019 to October 2019 in Lake Ulansuhai, a shallow eutrophic lake (mean depth of 0.7 m) located in a semi-arid region in Northern China. We found that Lake Ulansuhai was a predominantly source of atmospheric carbon dioxide (CO2); however, it converted to a CO2 sink in July due to eutrophication. It was also a strong source of methane (CH4) with a mean CO2 emission of 35.7 ± 12.1 mmol m-2 d-1 and CH4 emission of 5.9 ± 2.9 mmol m-2 d-1. The CO2 concentrations in most sites and CH4 concentrations in all sites were supersaturated, with the average partial pressure of CO2 (pCO2) being 654±34 µatm and the partial pressure of CH4 (pCH4) being 157±37 µatm. The partial pressures and emissions of the greenhouse gases exhibited substantial seasonal and spatial variations. The correlation analysis between the trophic level index and the partial pressure of the greenhouse gases indicated that eutrophication could significantly decrease the CO2 emissions but increase the CH4 emissions from the lake, resulting in a CH4 and CO2 emission ratio of approximately 2 in terms of global warming potential. Eutrophication decreased the pCO2 in the lake and subsequently increased the pCH4 due to nutrient input, thereby enhancing primary production. The results indicated that shallow eutrophic lakes in arid regions are strong sources of CH4 and that eutrophication could alter the greenhouse gas emission patterns.


Assuntos
Gases de Efeito Estufa , Lagos , Dióxido de Carbono/análise , China , Eutrofização , Lagos/análise , Metano/análise
19.
Sci Rep ; 10(1): 19649, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184424

RESUMO

We examined characteristics of chest CT across different time periods for patients with COVID-19 pneumonia in Huizhou, China. This study included 56 COVID-19 patients with abnormal CT acquired between January 22 and March 3, 2020. The 141 scans of 56 patients were classified into four groups (Groups 1-4) based on dates on which scans were obtained at the 1st, 2nd, 3rd week or longer than three weeks after illness onset. Forty-five patients with follow-up scans were categorized into four groups (Groups A-D) according to extent that lesions reduced (≥ 75%, 50-75%, 25-50% and < 25%). Ground-glass opacities (GGO) was prevalent in Groups 1-4 (58.1-82.6%), while percentages of consolidation ranged between 9.7% in Group 4 and 26.2% in Group 2. The highest frequency of fibrous stripes occurred in Group 3 (46.7%). Total CT scores were on average higher in Groups 2-3. Among 45 follow-up patients, 11 (24.4%) of them recovered with lesions reducing ≥ 75%, with the lowest median age and total CT scores on admission. There are temporal patterns of lung abnormalities in COVID-19 patients, with higher extent of lesion involvement occurring in the 2nd and 3rd week. Persisting lung changes indicate some patients may need isolation after discharge from hospital.


Assuntos
Infecções por Coronavirus/complicações , Pulmão/diagnóstico por imagem , Pneumonia Viral/complicações , Pneumonia/complicações , Pneumonia/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , COVID-19 , Infecções por Coronavirus/epidemiologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia
20.
PLoS One ; 15(11): e0242156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33186379

RESUMO

Information on the burden of disease due to foodborne pathogens in China is quite limited. To understand the incidence of foodborne gastroenteritis due to non-typhoidal Salmonella enterica and Vibrio parahaemolyticus, population survey and sentinel hospital surveillance were conducted during July 2010 to June 2011 in Shanghai, east China, and a model for calculating disease burden was established. The multiplier for gastroenteritis caused by these pathogens was estimated at 59 [95% confidence interval (CI) 30-102]. Annual incidence per 100,000 population in Shanghai was estimated as 48 (95% CI 24-83) and 183 (95% CI 93-317) cases for foodborne non-typhoidal salmonellosis and V. parahaemolyticus gastroenteritis, respectively, illustrating that bacterial gastroenteritis due to these two pathogens poses a substantial health burden. There is a significant difference between our simulated incidence and the data actually reported for foodborne diseases, indicating significant underreporting and underdiagnosis of non-typhoidal S. enterica and V. parahaemolyticus gastroenteritis in the surveillance area. The present research demonstrates basic situation of the health burden caused by major foodborne pathogens in the surveillance area. Enhanced laboratory-based sentinel hospital surveillance is one of the effective ways to monitor food safety in east China.


Assuntos
Gastroenterite/epidemiologia , Gastroenterite/microbiologia , Infecções por Salmonella/epidemiologia , Vibrioses/epidemiologia , Adulto , Idoso , Criança , Pré-Escolar , China/epidemiologia , Efeitos Psicossociais da Doença , Surtos de Doenças , Feminino , Microbiologia de Alimentos , Inocuidade dos Alimentos , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Incidência , Lactente , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Infecções por Salmonella/microbiologia , Salmonella enterica , Vigilância de Evento Sentinela , Vibrioses/microbiologia , Vibrio parahaemolyticus , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA