Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Trends Plant Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749873

RESUMO

Two recent studies reinvestigated the phenomenon of photorespiration as a photoprotective mechanism. Smith et al. suggest alleviated negative feedback regulation of chloroplast ATP synthase as an alternative hypothesis. Von Bismarck et al. discuss how photorespiration-impaired mutants cope somewhat better with fluctuating light (FL) environments because of downregulated photosynthesis and complex metabolic re-routing.

2.
Mol Biol Rep ; 51(1): 607, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704801

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is a critical neurological condition with few treatment options, where secondary immune responses and specific cell death forms, like pyroptosis, worsen brain damage. Pyroptosis involves gasdermin-mediated membrane pores, increasing inflammation and neural harm, with the NLRP3/Caspase-1/GSDMD pathway being central to this process. Peroxiredoxin II (Prx II), recognized for its mitochondrial protection and reactive oxygen species (ROS) scavenging abilities, appears as a promising neuronal pyroptosis modulator. However, its exact role and action mechanisms need clearer definition. This research aims to explore Prx II impact on neuronal pyroptosis and elucidate its mechanisms, especially regarding endoplasmic reticulum (ER) stress and oxidative stress-induced neuronal damage modulation. METHODS AND RESULTS: Utilizing MTT assays, Microscopy, Hoechst/PI staining, Western blotting, and immunofluorescence, we found Prx II effectively reduces LPS/ATP-induced pyroptosis and neuroinflammation in HT22 hippocampal neuronal cells. Our results indicate Prx II's neuroprotective actions are mediated through PI3K/AKT activation and ER stress pathway inhibition, diminishing mitochondrial dysfunction and decreasing neuronal pyroptosis through the ROS/MAPK/NF-κB pathway. These findings highlight Prx II potential therapeutic value in improving intracerebral hemorrhage outcomes by lessening secondary brain injury via critical signaling pathway modulation involved in neuronal pyroptosis. CONCLUSIONS: Our study not only underlines Prx II importance in neuroprotection but also opens new therapeutic intervention avenues in intracerebral hemorrhage, stressing the complex interplay between redox regulation, ER stress, and mitochondrial dynamics in neuroinflammation and cell death management.


Assuntos
Estresse do Retículo Endoplasmático , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Peroxirredoxinas , Piroptose , Espécies Reativas de Oxigênio , Piroptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Animais , Estresse Oxidativo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/complicações
3.
Sci Total Environ ; 930: 172755, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670372

RESUMO

With the advancement of technology, wastewater treatment has become a significant challenge limiting the clean and sustainable development of chemical and metallurgical industries. Foam extraction, based on interfacial separation and mineral flotation, has garnered considerable attention as a wastewater treatment technology due to its unique physicochemical properties. Although considerable excellent accomplishments were reported, there still lacks a comprehensive summary of process features and contaminant removal mechanisms via foam extraction. According to the latest research progresses, the principles and characteristics of foam extraction technology, the classification and application of flotation reagents are systematically summarized in this work. Then comprehensively commented on the application fields and prospects of iterative flotation technology such as ion flotation, adsorption flotation and floating-extraction. The shortcomings and limitations of the current foam extraction technologies were discussed, and the feasible process intensification techniques were highlighted. This review aims to enchance the understanding of the foam extraction mechanism, and provides guidance for the selection appropriate reagents and foam extraction technologies in wastewater treatment.

4.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637880

RESUMO

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


Assuntos
MicroRNAs , Doenças Mitocondriais , Doenças Neurodegenerativas , Humanos , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Apoptose , Estresse do Retículo Endoplasmático , MicroRNAs/metabolismo
5.
J Inflamm Res ; 17: 1919-1928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562656

RESUMO

Background: Macrophage play a significant work in the development of tuberculosis. This study aims to investigate the relationship between TREM2 and macrophage polarization, as well as the related cytokines. Methods: This study involved 43 pulmonary tuberculosis patients and 37 healthy controls. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of M1/M2 macrophage-related cytokines IL-10 and IL-12 in the peripheral blood of pulmonary tuberculosis patients. The relative mRNA expression levels of TREM2, IL-10 and IL-12 were detected using quantitative real-time PCR (qRT-PCR). Additionally, Spearman rank correlation analysis was used to preliminarily assess the correlation between TREM2 and M1 / M2 macrophages. Hematoxylin-eosin (HE) staining was performed to observe the pathological manifestations of pulmonary tuberculosis lesions. Immunohistochemical (IHC) staining was used to observe the localization of the macrophage-specific molecule CD68, the M1 specific molecule iNOS, the M2 specific molecule CD163, and TREM2. Results: The lesions of pulmonary tuberculosis patients showed Langhans multinucleated macrophages and tuberculous granulomas. The ELISA results indicated that the expression levels of IL-10 and IL-12 were significantly increased in peripheral blood of pulmonary tuberculosis patients. Additionally, the relative mRNA expression levels of TREM2, IL-10 and IL-12 were also significantly higher in the pulmonary tuberculosis group. Furthermore, a positive correlation was observed between TREM2 and IL-10, which are secreted by M2 macrophages. IHC revealed significant positivity of TREM2 and macrophage-related markers in tuberculous granuloma. Specifically, TREM2 and M2 macrophage marker CD163 were significantly expressed in the cytoplasm and membrane of Langhans multinucleated macrophages. Conclusion: The role of macrophage polarization in pulmonary tuberculosis is significant, and further investigation is needed to understand relationship between TREM2 and M2 macrophages.

6.
Sci Rep ; 14(1): 7645, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561361

RESUMO

Remimazolam, a novel intravenous anesthetic, has been proven to be safe and efficacious in the gastroscopy setting among the elderly. However, reports comparing the effectiveness and safety of using equivalent doses of remimazolam with propofol have not been seen. The aim of this study was to compare the sedation efficacy and safety of the 95% effective doses (ED95) of remimazolam versus propofol combined with sufentanil in the gastroscopy setting among the elderly. In the first step of this two-step study, a modified up-and-down method was used to calculate the ED95 of remimazolam and propofol when combined with 0.1 µg/kg sufentanil in inhibiting body movement of elderly patients undergoing gastroscopy. In the second step, ED95 of both agents calculated in the first step were administered, endpoints of efficacy, safety, and incidence of adverse events were compared. A total of 46 individuals completed the first step. The ED95 of remimazolam was 0.163 mg/kg (95% CI 0.160-0.170 mg/kg), and that of propofol was 1.042 mg/kg (95% CI 1.007-1.112 mg/kg). In the second step, 240 patients completed the trial. The anesthetic effective rates of the remimazolam group and the propofol group were 78% and 83%, respectively, with no statistical difference (P = 0.312). Patients in the remimazolam group had more stable circulatory functions (P < 0.0001) and a lower incidence of pain on injection (3.3% vs. 19.5%, P < 0.0001). The incidence of hypotension was low in the remimazolam versus propofol group (15.6% vs. 39.0%, P < 0.0001). Overall adverse event was low in the remimazolam versus propofol group (21.3% vs. 62.7%, P < 0.0001).In this study, we found that when anesthesia was administered to elderly gastroscopy patients based on 95% effective doses of remimazolam and propofol, remimazolam was as effective as propofol, but was safer with a lower incidence of adverse events.Study registration: Chinese Clinical Trial Registry, ChiCTR2000034234. Registered 29/06/2020, https://www.chictr.org.cn .


Assuntos
Anestesia , Propofol , Idoso , Humanos , Benzodiazepinas , Gastroscopia , Propofol/efeitos adversos , Sufentanil
7.
Protoplasma ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519772

RESUMO

Soil salinization leads to a reduction in arable land area, which seriously endangers food security. Developing saline-alkali land has become a key measure to address the contradiction between population growth and limited arable land. Rice is the most important global food crop, feeding half of the world's population and making it a suitable choice for planting on saline-alkali lands. The traditional salt-alkali improvement method has several drawbacks. Currently, non-thermal plasma (NTP) technology is being increasingly applied in agriculture. However, there are few reports on the cultivation of salt/alkali-tolerant rice. Under alkaline stress, argon NTP treatment significantly increased the germination rate of Longdao 5 (LD5) rice seeds. In addition, at 15 kV and 120 s, NTP treatment significantly increased the activity of antioxidant enzymes such as catalase and SOD. NTP treatment induced changes in genes related to salt-alkali stress in rice seedlings, such as chitinase and xylanase inhibitor proteins, which increased the tolerance of the seeds to salt-alkali stress. This experiment has expanded the application scope of NTP in agriculture, providing a more cost-effective, less harmful, and faster method for developing salt-alkali-tolerant rice and laying a theoretical foundation for cultivating NTP-enhanced salt-alkali-tolerant rice.

8.
In Vivo ; 38(2): 630-639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418129

RESUMO

BACKGROUND/AIM: Cisplatin [cis-diamminedichloroplatinum(II), CDDP] is a widely used and effective antitumor drug in clinical settings, notorious for its nephrotoxic side effects. This study investigated the mechanisms of CDDP-induced damage in African green monkey kidney (Vero) cells, with a focus on the role of Peroxiredoxin I (Prx I) and Peroxiredoxin II (Prx II) of the peroxiredoxin (Prx) family, which scavenge reactive oxygen species (ROS). MATERIALS AND METHODS: We utilized the Vero cell line derived from African green monkey kidneys and exposed these cells to various concentrations of CDDP. Cell viability, apoptosis, ROS levels, and mitochondrial membrane potential were assessed. RESULTS: CDDP significantly compromised Vero cell viability by elevating both cellular and mitochondrial ROS, which led to increased apoptosis. Pretreatment with the ROS scavenger N-acetyl-L-cysteine (NAC) effectively reduced CDDP-induced ROS accumulation and subsequent cell apoptosis. Furthermore, CDDP reduced Prx I and Prx II levels in a dose- and time-dependent manner. The inhibition of Prx I and II exacerbated cell death, implicating their role in CDDP-induced accumulation of cellular ROS. Additionally, CDDP enhanced the phosphorylation of MAPKs (p38, ERK, and JNK) without affecting AKT. The inhibition of these pathways significantly attenuated CDDP-induced apoptosis. CONCLUSION: The study highlights the involvement of Prx proteins in CDDP-induced nephrotoxicity and emphasizes the central role of ROS in cell death mediation. These insights offer promising avenues for developing clinical interventions to mitigate the nephrotoxic effects of CDDP.


Assuntos
Cisplatino , Peroxirredoxinas , Animais , Chlorocebus aethiops , Cisplatino/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peroxirredoxinas/metabolismo , Transdução de Sinais , Apoptose , Rim/metabolismo
9.
Pest Manag Sci ; 80(6): 2817-2826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323798

RESUMO

BACKGROUND: Machine vision-based precision weed management is a promising solution to substantially reduce herbicide input and weed control cost. The objective of this research was to compare two different deep learning-based approaches for detecting weeds in cabbage: (1) detecting weeds directly, and (2) detecting crops by generating the bounding boxes covering the crops and any green pixels outside the bounding boxes were deemed as weeds. RESULTS: The precision, recall, F1-score, mAP0.5, mAP0.5:0.95 of You Only Look Once (YOLO) v5 for detecting cabbage were 0.986, 0.979, 0.982, 0.995, and 0.851, respectively, while these metrics were 0.973, 0.985, 0.979, 0.993, and 0.906 for YOLOv8, respectively. However, none of these metrics exceeded 0.891 when detecting weeds. The reduced performances for directly detecting weeds could be attributed to the diverse weed species at varying densities and growth stages with different plant morphologies. A segmentation procedure demonstrated its effectiveness for extracting weeds outside the bounding boxes covering the crops, and thereby realizing effective indirect weed detection. CONCLUSION: The indirect weed detection approach demands less manpower as the need for constructing a large training dataset containing a variety of weed species is unnecessary. However, in a certain case, weeds are likely to remain undetected due to their growth in close proximity with crops and being situated within the predicted bounding boxes that encompass the crops. The models generated in this research can be used in conjunction with the machine vision subsystem of a smart sprayer or mechanical weeder. © 2024 Society of Chemical Industry.


Assuntos
Brassica , Aprendizado Profundo , Plantas Daninhas , Controle de Plantas Daninhas , Brassica/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Controle de Plantas Daninhas/métodos , Produtos Agrícolas/crescimento & desenvolvimento
10.
RSC Adv ; 14(9): 6048-6057, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370456

RESUMO

Environmental protection mandates have spurred the widespread adoption of lead-free glass in electronic material adhesion. Glass powder, crucial for solar silver paste, notably affects the ohmic contact at the Ag-Si interface of crystalline silicon solar cells. This study examines how TeO2 content influences the high-temperature flowability and wettability of lead-free Bi2O3-TeO2-based glass powder, alongside the interplay between the glass's thermal properties and interface contact. Additionally, it investigates the Bi2O3-TeO2 ratio's impact on current transmission through the interfacial glass layer. Experimental results show that the synthesized glass powder exhibits superior high-temperature flowability and wettability, with a low contact resistance of 1.5 mΩ cm2 in silver paste applications. This study also proposes an optimal approach for enhancing current transmission through the interfacial glass layer. Consequently, this glass powder is highly valuable for c-Si solar cell silver paste applications, offering novel insights into improving current transmission efficiency.

11.
Chemosphere ; 353: 141533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403126

RESUMO

Ion precipitation flotation technology was demonstrated to be an efficient method for the separation of valuable metals from low-concentration solution. However, the selective separation of three metals from mixing solution is a great challenge, and highly selective reagents are the key to polymetallic separation. In this work, stepwise separation of Co and Zn from the simulated zinc hydrometallurgy wastewater containing ternary Co-Zn-Mn metals by ion precipitation flotation process was proposed. It's demonstrated that organic reagents of 1-nitroso-2-naphthol (NN) and sodium dimethyldithiocarbamate (SDDC) had excellent selectivity for the capture of Co and Zn to form respective precipitate from wastewaters via the chelation reactions. After precipitation, dodecylpyridinium chloride (DPC) and tetradecyltrimethylammonium bromide (TTAB) were chosen as surfactants for the separation of Co and Zn sediments from the solution via the flotation process. The effects of solution pH, molar ratio, reaction temperature, and reaction time on the selective precipitation efficiencies of Co and Zn as well as the effects of surfactant dosage and flotation gas velocity on the flotation separation efficiencies were systematically investigated. It's demonstrated that the comprehensive recovery rates of Co, Mn, and Zn reach 98%, 90%, and 99%, respectively. After separation, oxidation calcination of the foam products was conducted to prepare high-purity Co3O4 and ZnO nanoparticles in which the organic matters were burnt out with gas emissions. The stepwise chelation capture mechanisms of Co and Zn by highly selective precipitation reagents were minutely discussed. It's demonstrated that the proposed selective stepwise precipitation and flotation method is suitable for recovery of critical metal ions from low-concentration polymetallic wastewaters.


Assuntos
Águas Residuárias , Zinco , Metais , Indicadores e Reagentes , Tensoativos , Íons
12.
BMC Anesthesiol ; 24(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166724

RESUMO

BACKGROUND: Ciprofol is a novel intravenous sedative and anesthetic. Studies have shown that it features a rapid onset of action, a fast recovery time, slight inhibition of respiratory and cardiovascular functions, and a low incidence of adverse reactions. This study aims to explore the median effective dose (ED50) and the 95% effective dose (ED95) of ciprofol in inhibiting responses to gastroscope insertion when combined with a low dose of alfentanil, and to evaluate its safety, to provide a reference for the rational use of ciprofol in clinical practices. METHODS: We included 25 patients aged 18-64 years of either sex who underwent gastroscopy under intravenous general anesthesia, with a Body Mass Index (BMI) 18-28 kg/m2, and an American Society of Anesthesiologists (ASA) grade I or II. In this study, the dose-finding strategy of ciprofol followed a modified Dixon's up-and-down method with an initial dose of 0.30 mg/kg and an increment of 0.02 mg/kg. Ciprofol was administered after intravenous injection of 7 µg/kg of alfentanil, and 2 min later a gastroscope was inserted. When the insertion response of one participant was positive (including body movement, coughing, and eye opening), an escalation of 0.02 mg/kg would be given to the next participant; otherwise, a de-escalation of 0.02 mg/kg would be administered. The study was terminated when negative response and positive response alternated 8 times. A Probit model was used to calculate the ED50 and ED95 of ciprofol in inhibiting responses to gastroscope insertion when combined with alfentanil. Patients' recovery time, discharge time, vital signs and occurrence of adverse reactions were recorded. RESULTS: The ED50 of single-dose intravenous ciprofol injection with 7 µg/kg of alfentanil in inhibiting gastroscope insertion responses was 0.217 mg/kg, and the ED95 was 0.247 mg/kg. Patients' recovery time and discharge time were 11.04 ± 1.49 min and 9.64 ± 2.38 min, respectively. The overall incidence of adverse reactions was 12%. CONCLUSION: The ED50 of ciprofol combined with 7 µg/kg of alfentanil in inhibiting gastroscope insertion responses was 0.217 mg/kg, and the ED95 was 0.247 mg/kg. Ciprofol showed a low incidence of anesthesia-related adverse events. TRIAL REGISTRATION: http://www.chictr.org.cn (ChiCTR2200061727).


Assuntos
Alfentanil , Propofol , Humanos , Gastroscópios , Estudos Prospectivos , Hipnóticos e Sedativos , Anestesia Intravenosa
13.
Materials (Basel) ; 17(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255613

RESUMO

Silver powder, as the primary component of solar silver paste, significantly influences various aspects of the paste's performance, including printing, sintering, and conductivity. This study reveals that, beyond the shape and size of the silver powders, their microstructure is a critical factor influencing the performance of both silver powders and silver pastes in solar cell applications. The growth process leads to the formation of either polycrystalline aggregated silver powder or crystal growth silver powder. Analyzing the performance characteristics of these different microstructures provides guidance for selecting silver powders for silver pastes at different sintering temperatures. Polycrystalline aggregated silver powder exhibits higher sintering activity, with a sintering initiation temperature around 450 °C. The resulting silver paste, sintered at 750 °C, demonstrates a low sheet resistance of 2.92 mΩ/sq and high adhesion of 2.13 N. This silver powder is suitable for formulating silver pastes with lower sintering temperatures. The solar cell electrode grid lines have a high aspect ratio of 0.37, showing poor uniformity. However, due to the high sintering activity of the silver powder, the glass layer dissolves and deposits more silver, resulting in excellent conductivity, a low contact resistance of the silver electrode, a low series resistance of the solar cell of 1.23 mΩ, and a high photoelectric conversion efficiency of 23.16%. Crystal growth silver powder exhibits the highest tap density of 5.52 g/cm3. The corresponding silver paste shows improved densification upon sintering, especially at 840 °C, yielding a sheet resistance of 2.56 mΩ/sq and adhesion of 3.05 N. This silver powder is suitable for formulating silver pastes with higher sintering temperatures. The solar cell electrode grid lines are uniform with the highest aspect ratio of 0.40, resulting in a smaller shading area, a high fill factor of 81.59%, and a slightly higher photoelectric conversion efficiency of 23.17% compared to the polycrystalline aggregated silver powder.

14.
ACS Omega ; 9(1): 1535-1545, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222553

RESUMO

Amidst the rapid advancements in flexible electronics, flexible pressure sensors have achieved widespread applications in fields such as wearable devices and motion monitoring. Nevertheless, it is still a challenge to design a sensor with high sensitivity, cost-effectiveness, and a simplified manufacturing process. This paper introduces a piezoresistive sensor built upon a composite conductive filler. The sensor incorporates a super absorbent polymer (SAP) to absorb a phosphoric acid solution and doped carbon nanotubes as the composite conductive filler. In contrast to conventional rigid conductive fillers, the elastic polymer SAP enhances the sensor's stability significantly by exhibiting superior compatibility with the polydimethylsiloxane matrix, all the while reducing its Young's modulus. This work aims to theoretically elucidate the underlying principles that enable the sensor to achieve high sensitivity. It focuses on the induction of charge carriers due to pressure, which leads to the formation of a conductive pathway and subsequent changes in resistance, thus facilitating precise pressure detection. The paper also discusses the effects of piezoresistive layers with varying thicknesses and conductive fillers on the sensor's output performance. The results highlight the sensor's high sensitivity (0.094 kPa-1), rapid response time (105 ms), and exceptional cyclic load/unload stability (>5000 cycles). Furthermore, this paper establishes a versatile sensing network by integrating a portable inductance, capacitance, and resistance instrument with a programmable logic controller module. Compared to individual sensors, this system enables multipoint measurements, offering high spatial resolution and real-time monitoring capabilities, significantly expanding its overall practicality.

15.
Neurochem Int ; 174: 105677, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290616

RESUMO

It is widely acknowledged that epilepsy is a neurological disorder characterized by recurrent and atypical neuronal discharges, resulting in transient dysfunction within the brain. The protective role of hydrogen sulfide (H2S) in epilepsy has been elucidated by recent studies, but the underlying mechanisms remain poorly understood. To investigate this, the concentration of H2S was measured by spectrophotometry and a fluorescent probe in LiCl/Pilocarpine (LiCl/Pilo)-induced seizures in rats. The localization of proteins was examined using immunofluorescence. Electroencephalogram and behavioral tests were employed to evaluate the occurrence of seizures. Neuropathological changes in the hippocampus were examined by hematoxylin-eosin staining, Nissl staining, and transmission electron microscopy. Through proteomics and bioinformatics analysis, we identified the differential proteins in the hippocampus of rats following H2S intervention. Protein changes were detected through western blotting. The results showed that H2S treatment significantly alleviated seizures and minimized post-seizures neurological damage in rats. Proteomics analysis revealed adenylate cyclase 3 (AC3) as a protein potentially targeted by H2S. Moreover, the AC3 activator forskolin reversed the downregulation effect of H2S on the AC3/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/transient receptor potential vanilloid 2 (TRPV2) signaling pathway. In conclusion, H2S targets and downregulates the expression of AC3, thereby modulating the AC3/cAMP/PKA signaling pathway to regulate the expression of TRPV2 in LiCl/Pilo-induced seizures, ultimately leading to seizure inhibition and neuroprotection.


Assuntos
Adenilil Ciclases , Epilepsia , Pilocarpina , Ratos , Animais , Pilocarpina/toxicidade , Neuroproteção , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Convulsões/metabolismo , AMP Cíclico/metabolismo , Epilepsia/induzido quimicamente
16.
Ultrason Sonochem ; 102: 106758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219552

RESUMO

Clean and efficient extraction and separation of precious metals from discarded Pb-Sn alloy is critical to the sustainable utilization of solid waste resources. Dense oxide layer and compact alloy texture in the waste Pb-Sn alloy pose challenges to the effective leaching process. Ultrasonic waves are demonstrated to improve separation efficiency via the favorable physical and chemical effects in solution system. In this study, ultrasound-assisted leaching technology is attempted to rapidly and selectively extract Pb from the waste Pb-Sn alloy, and gives emphasis on ultrasonic electrochemical behaviors. The Eh-pH diagrams of Sn-H2O and Pb-H2O systems were firstly analyzed to lay the selective dissolution foundation. It's indicated that oxidizing HNO3 lixiviant is suitable to realize the selective separation of Pb. Both Sn and Pb can be dissolved to ionic Sn2+ and Pb2+ in the HNO3 solution. However, Sn2+ rapidly oxidizes to Sn4+ and Sn4+ further hydrolyzes to insoluble SnO2, which will agglomerate on unreacted materials to limit internal metal leaching in conventional leaching process. Due to the vibratory stripping of oxide layer by physical effect of ultrasound, the conventional acid leaching time for Pb extraction can be halved with the ultrasound assistance. About 99.12 % Pb and only 0.1 % Sn are dissolved in ultrasound-assisted leaching under the following optimal parameters: 0.5 mol/L HNO3, leaching temperature of 80 °C, time of 30 min, liquid-to-solid ratio of 20 mL/g, and ultrasound intensity of 0.52 W/cm2. Leaching kinetics of Pb, phase transition, microstructure evolution, Pb-Sn galvanic corrosion and dissolution polarization curve were studied to determine the ultrasonic enhanced dissolution mechanism. Notably, Pb and Sn form a microcorrosion galvanic cell in which Sn acts as a cathode and is protected while the Pb undergoes intensifying corrosion as the anode giving rise to the higher Pb dissolution efficiency. Eventually, it's suggested that Pb can be rapidly extracted and separated from the waste Pb-Sn alloy during the ultrasound-assisted HNO3 leaching process via the ultrasound physical and chemical effects, especially the sonochemistry aspect of intensified spot corrosion and galvanic corrosion. The proposed ultrasonic electrochemical corrosion in this work were applicable to the extraction of valuable metals from various waste alloys through leaching method.

17.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063750

RESUMO

Two-dimensional electron gas (2DEG) at the (100) KTaO3(KTO) surface and interfaces has attracted extensive interest because of its abundant physical properties. Here, light illumination-induced semiconductor-metal transition in the 2DEG at the KTO surface was investigated. 2DEG was formed at the surface of KTO by argon ion bombardment. The 2DEG prepared with a shorter bombardment time (300 s) exhibits semiconducting behavior in the range of 20~300 K in the dark. However, it shows a different resistance behavior, namely, a metallic state above ~55 K and a semiconducting state below ~55 K when exposed to visible light (405 nm) with a giant conductivity increase of about eight orders of magnitude at 20 K. The suppression of the semiconducting behavior is found to be more pronounced with increasing light power. After removing the illumination, the resistance cannot recover quickly, exhibiting persistent photoconductivity. More interestingly, the photoresponse of the 2DEG below 50 K was almost independent of the laser wavelength, although the photon energy is lower than the band gap of KTO. The present results provide experimental support for tuning oxide 2DEG by photoexcitation, suggesting promising applications of KTO-based 2DEG in future electronic and optoelectronic devices.

18.
Aging (Albany NY) ; 15(21): 12085-12103, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916989

RESUMO

This study aimed to investigate the differential expression of serum microRNAs in cognitive normal subjects (NC), patients with mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD), with the objective of identifying potential diagnostic biomarkers. A total of 320 clinical samples, including 32 MCI patients, 288 AD patients, and 288 healthy controls, were collected following international standards. The expression of microRNAs in serum was analyzed using the Agilent human microRNA oligonucleotide microarray, and bioinformatics methods were employed to predict target genes and their involvement in AD-related pathways. Among the 122 microRNAs screened, five microRNAs (hsa-miR-208a-5p, hsa-miR-125b-1-3p, hsa-miR-3194-3p, hsa-miR-4652-5p, and hsa-miR-4419a) exhibited differential expression and met quality control standards. Bioinformatics analysis revealed that the target genes of these microRNAs were involved in multiple AD-related pathways, which changed with disease progression. These findings demonstrate significant differences in serum microRNA expression between NC, MCI, and AD patients. Three microRNAs were identified as potential candidates for the development of diagnostic models for MCI and AD. The results highlight the crucial role of microRNAs in the pathogenesis of AD and provide a foundation for the development of novel therapeutic strategies and personalized treatment approaches for AD. This study contributes to the understanding of AD at the molecular level and offers potential avenues for early diagnosis and intervention in AD patients.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , MicroRNAs/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Biomarcadores , Análise de Sequência com Séries de Oligonucleotídeos , Diagnóstico Precoce
19.
Ultrason Sonochem ; 100: 106631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837707

RESUMO

Clean and fast extraction of tin from the surface of tinplate scraps is of great significance for the efficient utilization of waste resources. However, the dense tin layer causes the low efficiency of conventional leaching process. To improve Sn leaching efficiency, the ultrasound technique was adopted to extract Sn from tinplate scraps by alkaline leaching in this study. In the NaOH-H2O2 leaching system, metallic tin and alloyed tin in Fe-Sn alloy located on the surface of tinplate scraps can be oxidized and transferred to soluble Na2SnO3, while the iron in Fe-Sn alloy was oxidized to oxides which were chemically inert in alkaline solution. The differences in chemical solubility of Sn and Fe, and solubleness of stannate and iron oxides gave rise to the selective separation of Sn from the tinplate scraps. The effects of the leaching parameters on the Sn leaching behaviors in conventional and ultrasound-assisted leaching processes were compared. The conventional leaching temperature and time were significantly reduced during the ultrasound-assisted leaching process. Almost all of Sn can be extracted after conventional leaching at 1 mol/L NaOH, temperature of 80 â„ƒ and time of 60 min, however the same Sn leaching effect can be achieved by ultrasound-assisted leaching at 60 â„ƒ for 30 min with ultrasound power of 60% (360 W). Sn leaching kinetics based on the plate model demonstrated the reaction rate constant of the ultrasound-assisted leaching was 70% higher than that of the conventional leaching. A novel acoustoelectric synergy effect underlying intensifying mechanism by ultrasound irradiation was proposed in this study. Eventually, this work provided a rapid and clean tin extraction method from tinplate scraps via the ultrasound-assisted alkaline leaching treatment.

20.
J Fungi (Basel) ; 9(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37888241

RESUMO

While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA