Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cryobiology ; 107: 23-34, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716769

RESUMO

Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 µm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 µm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.


Assuntos
Melatonina , Trealose , Animais , Sobrevivência Celular , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Melatonina/farmacologia , Células-Tronco , Suínos , Trealose/farmacologia
2.
Sci Rep ; 12(1): 8432, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589865

RESUMO

Synovial fluid-derived mesenchymal stem cells (SFMSCs) play important regulatory roles in the physiological balance of the temporomandibular joint. Interleukin (IL)-1ß regulates the biological behavior of SFMSCs; however, the effects of IL-1ß on long noncoding RNA (lncRNA) and mRNA expression in SFMSCs in the temporomandibular joint are unclear. Here, we evaluated the lncRNA and mRNA expression profiles of IL-1ß-stimulated SFMSCs. Using microarrays, we identified 264 lncRNAs (203 upregulated, 61 downregulated) and 258 mRNAs (201 upregulated, 57 downregulated) that were differentially expressed after treatment with IL-1ß (fold changes ≥ 2, P < 0.05). Kyoto Encyclopedia of Genes and Genomes pathway analysis found that one of the most significantly enriched pathways was the NF-κB pathway. Five paired antisense lncRNAs and mRNAs, eight paired enhancer lncRNAs and mRNAs, and nine paired long intergenic noncoding RNAs and mRNAs were predicted to be co-expressed. A network constructed by the top 30 K-score genes was visualized and evaluated. We found a co-expression relationship between RP3-467K16.4 and IL8 and between LOC541472 and IL6, which are related to NF-κB pathway activation. Overall, our results provide important insights into changes in lncRNA and mRNA expression in IL-1ß-stimulated SFMSCs, which can facilitate the identification of potential therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Líquido Sinovial/metabolismo
3.
iScience ; 25(5): 104299, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573194

RESUMO

Electroactive biofilms (EABs) play an important role in bioelectrochemical systems due to their abilities to generate electrons and perform extracellular electron transfer (EET). Here, we investigated the effects of quorum sensing (QS) signals on power output, chlortetracycline degradation, and structure of EABs in MFCs treating antibiotic wastewater. The voltage output of MFCs with C4-HSL and PQS increased by 21.57% and 13.73%, respectively, compared with that without QS signals. The chlortetracycline degradation efficiency in closed-circuit MFCs with C4-HSL and PQS increased by 56.53% and 50.04%, respectively, which resulted from the thicker biofilms, higher biomass, and stronger activities. Additionally, QS signals induced the heterogeneous distribution of EPS for a balance between self-protection and EET under environmental pressure. Geobacter prevailed by the addition of QS signals to resist high chlortetracycline concentration. Our results provided a broader understanding on regulating EABs within electrode interface to improve their performance for environmental remediation and clean energy development.

4.
Bone Joint Res ; 11(1): 40-48, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35084211

RESUMO

AIMS: In the repair of condylar cartilage injury, synovium-derived mesenchymal stem cells (SMSCs) migrate to an injured site and differentiate into cartilage. This study aimed to confirm that histone deacetylase (HDAC) inhibitors, which alleviate arthritis, can improve chondrogenesis inhibited by IL-1ß, and to explore its mechanism. METHODS: SMSCs were isolated from synovium specimens of patients undergoing temporomandibular joint (TMJ) surgery. Chondrogenic differentiation potential of SMSCs was evaluated in vitro in the control, IL-1ß stimulation, and IL-1ß stimulation with HDAC inhibitors groups. The effect of HDAC inhibitors on the synovium and condylar cartilage in a rat TMJ arthritis model was evaluated. RESULTS: Interleukin (IL)-1ß inhibited the chondrogenic differentiation potential of SMSCs, while the HDAC inhibitors, suberoylanilide hydroxamic acid (SAHA) and panobinostat (LBH589), attenuated inhibition of IL-1ß-induced SMSC chondrogenesis. Additionally, SAHA attenuated the destruction of condylar cartilage in rat TMJ arthritis model. IL-6 (p < 0.001) and matrix metalloproteinase 13 (MMP13) (p = 0.006) were significantly upregulated after IL-1ß stimulation, while SAHA and LBH589 attenuated IL-6 and MMP13 expression, which was upregulated by IL-1ß in vitro. Silencing of IL-6 significantly downregulated MMP13 expression and attenuated IL-1ß-induced chondrogenesis inhibition of SMSCs. CONCLUSION: HDAC inhibitors SAHA and LBH589 attenuated chondrogenesis inhibition of SMSC induced by IL-1ß in TMJ, and inhibition of IL-6/MMP13 pathway activation contributes to this biological progress. This study provides a theoretical basis for the application of HDAC inhibitors in the treatment of TMJ arthritis. Cite this article: Bone Joint Res 2022;11(1):40-48.

5.
Histochem Cell Biol ; 157(1): 39-50, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34586448

RESUMO

Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/ß-catenin signaling pathway. When an activator of the Wnt/ß-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/ß-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/ß-catenin signaling pathway interact to regulate the fate of pSDSCs.


Assuntos
Células-Tronco , Via de Sinalização Wnt , Proteínas de Sinalização YAP , beta Catenina , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco/metabolismo , Suínos , Proteínas de Sinalização YAP/metabolismo , beta Catenina/metabolismo
6.
3 Biotech ; 11(2): 100, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33520585

RESUMO

Due to the promising applications, the demand to enhance poly-γ-glutamic acid (γ-PGA) production while decreasing the cost has increased in the past decade. Here, xylose/glucose mixture and corncob hydrolysate (CCH) was evaluated as alternatives for γ-PGA production by Bacillus amyloliquefaciens C1. Although both have been validated to support cell growth, glucose and xylose were not simutaneously consumed and exhibited a diauxic growth pattern due to carbon catabolite repression (CCR) in B. amyloliquefaciens C1, while the enhanced transcription of araE alleviated the xylose transport bottleneck across a cellular membrane. Additionally, the xyl operon (xylA and xylB), which was responsible for xylose metabolism, was strongly induced by xylose at the transcriptional level. When cultured in a mixed medium, xylR was sharply induced to 3.39-folds during the first 8-h while reduced to the base level similar to that in xylose medium. Finally, pre-treated CCH mainly contained a mixture of glucose and xylose was employed for γ-PGA fermentation, which obtained a final concentration of 6.56 ± 0.27 g/L. Although the glucose utilization rate (84.91 ± 1.81%) was lower than that with chemical substrates, the xylose utilization rate (43.41 ± 2.14%) and the sodium glutamate conversion rate (77.22%) of CCH were acceptable. Our study provided a promising approach for the green production of γ-PGA from lignocellulosic biomass and circumvent excessive non-food usage of glucose.

7.
Sci Total Environ ; 760: 143415, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248786

RESUMO

In this study, a core-shell Fe@Co nanoparticles uniformly modified graphite felt (Fe@Co/GF) was fabricated as the cathode by one-pot self-assembly strategy for the degradation of vanillic acid (VA), syringic acid (SA), and 4-hydroxybenzoic acid (HBA) in the Bio-Electro-Fenton (BEF) system. The Fe@Co/GF cathode showed dual advantages with excellent electrochemical performance and catalytic reactivity not only due to the high electron transfer efficiency but also the synergistic redox cycles between Fe and Co species, both of which significantly enhanced the in situ generation of H2O2 and hydroxyl radicals (OH) to 152.40 µmol/L and 138.48 µmol/L, respectively. In this case, the degradation rates of VA, SA, and HBA reached 100, 94.32, and 100%, respectively, within 22 h. Representatively, VA was degraded and ultimately mineralized via demethylation, decarboxylation and ring-opening reactions. This work provided a promising approach for eliminating typical recalcitrant organic pollutants generated by the pre-treatment of lignocellulose resources.

8.
Water Res ; 189: 116589, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166922

RESUMO

Electroactive biofilms (EABs) can be integrated with conductive nanomaterials to boost extracellular electron transfer (EET) for achieving efficient waste treatment and energy conversion in bioelectrochemical systems. However, the in situ nanomaterial-modified EABs of mixed-culture, and their response under environmental stress are rarely revealed. Here, two nanocatalyst-decorated EABs were established by self-assembled Au nanoparticles-reduced graphene oxide (Au-NPs/rGO) in mixed-biofilms with different maturities, then their multi-property were analyzed under long-term phenolic shock. Results showed that the power density of Au-NPs/rGO decorated EABs was significantly enhanced by 28.66-42.82% due to the intensified EET pathways inside biofilms. Meanwhile, the electrochemical and catalytic performance of EABs were controllably regulated by 0.3-3.0 g/L phenolic compounds, which, however, resulted in differential alterations in their architecture, composition, and viability. EABs originated with higher maturity displayed more compact structure, lower thickness (110 µm), higher biomass (8.67 mg/cm2) and viability (0.85-0.91), endowing it better antishock ability to phenolic compounds. Phenolic-shock also induced the heterogeneous distribution of extracellular polymeric substances in terms of both spatial and bonding degrees of the decorated EABs, which could be regarded as an active response to strike a balance between self-protection and EET under environmental pressure. Our findings provide a broader understanding of microbe-electrode interactions in the micro-ecology interface and improve their performance in the removal of complex contaminants for sustainable remediation and new-energy development.


Assuntos
Geobacter , Nanopartículas Metálicas , Biofilmes , Eletrodos , Ouro , Grafite
9.
Biochem Biophys Res Commun ; 478(2): 845-51, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27507215

RESUMO

Platelet-derived growth factor D (PDGF-D) signaling plays significant roles during the development and progression of human malignancies via interacting with the receptor of PDGF-D (PDGFR). Meanwhile, the majority of human tumor metastasis is closely associated with epithelial-mesenchymal transition (EMT). However, the underlying mechanism between PDGF-D/PDGFR signaling and EMT which involved in tumor metastasis remain dismal. This study aimed to investigate the role of PDGF-D signaling during EMT process of tongue squamous cell carcinoma (TSCC). In our study, the expression of PDGF-D and PDGFR were examined in primary TSCC samples and the expression of PDGF-D was also determined in TSCC cell lines. In addition, the correlation between PDGF-D expression and TSCC aggressive histopathological features was analyzed. Our results implied that upregulation of PDGFRß in UM1 cells induced with exogenous PDGF-D can remarkably promote tumor cells invasiveness; conversely, when using small interfering RNA (siRNA), the invasiveness can be severely prohibited. Furthermore, PDGF-D downstream signal molecules p38, AKT, ERK and EMT biomarkers (E-cadherin, N-cadherin, Vimentin and snail) were measured using Western blot. Our results showed that PDGF-D can induce p38, AKT and ERK phosphorylation; downregulate epithelial markers and upregulate mesenchymal markers. On the contrary, PDGFRß siRNA significantly prohibited p38, AKT and ERK phosphorylation; inhibited EMT process. Function analysis revealed that PDGFRß siRNA obviously interfered with UM1 cell migration and invasion, according to transwell and wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the PDGF-D/PDGFRß axis in TSCC, and then involved in the tumor cell invasion via activation of p38/AKT/ERK/EMT pathway.


Assuntos
Carcinoma de Células Escamosas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias da Língua/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Humanos , Linfocinas/antagonistas & inibidores , Linfocinas/genética , Linfocinas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Fosforilação , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Vimentina/genética , Vimentina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA