Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37874980

RESUMO

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Assuntos
Micorrizas , Solanum lycopersicum , Micorrizas/fisiologia , Solanum lycopersicum/genética , Raízes de Plantas/metabolismo , Simbiose/genética , Peptídeos/metabolismo
2.
Front Pharmacol ; 13: 931600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133809

RESUMO

Chronic itch severely reduces the quality of life of patients. Electroacupuncture (EA) is widely used to treat chronic itch. However, the underlying mechanism of this therapeutic action of EA is largely unknown. Cannabinoid CB1 receptors in the ventrolateral periaqueductal gray (vlPAG) mediate the analgesic effect of EA. Using a dry skin-induced itch model in mice, we determined whether EA treatment reduces chronic itch via CB1 receptors in the vlPAG. We showed that the optimal inhibitory effect of EA on chronic itch was achieved at the high frequency and high intensity (100 Hz and 3 mA) at "Quchi" (LI11) and "Hegu" (LI14) acupoints, which are located in the same spinal dermatome as the cervical skin lesions. EA reversed the increased expression of CB1 receptors in the vlPAG and decreased the concentration of 5-hydroxytryptamine (5-HT) in the medulla oblongata and the expression of gastrin-releasing peptide receptors (GRPR) in the cervical spinal cord. Furthermore, knockout of CB1 receptors on GABAergic neurons in the vlPAG attenuated scratching behavior and the 5-HT concentration in the medulla oblongata. In contrast, knockout of CB1 receptors on glutamatergic neurons in the vlPAG blocked the antipruritic effects of EA and the inhibitory effect of EA on the 5-HT concentration in the medulla oblongata. Our findings suggest that EA treatment reduces chronic itch by activation of CB1 receptors on glutamatergic neurons and inhibition of CB1 receptors on GABAergic neurons in the vlPAG, thereby inhibiting the 5-HT release from the medulla oblongata to GRPR-expressing neurons in the spinal cord. Our findings suggest that EA attenuates chronic itch via activating CB1 receptors expressed on glutamatergic neurons and downregulating CB1 receptors on GABAergic neurons in the vlPAG, leading to the reduction in 5-HT release in the rostroventral medulla and GRPR signaling in the spinal cord. Our study not only advances our understanding of the mechanisms of the therapeutic effect of EA on chronic itch but also guides the selection of optimal parameters and acupoints of EA for treating chronic itch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA