Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Gene ; 927: 148708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885818

RESUMO

Plasmodiophora brassicae, the causative agent of clubroot disease, establishes a long-lasting parasitic relationship with its host by inducing the expression of sugar transporters. Previous studies have indicated that most BrSWEET genes in Chinese cabbage are up-regulated upon infection with P. brassicae. However, the key BrSWEET genes responsive to P. brassicae have not been definitively identified. In this study, we selected five BrSWEET genes and conducted a functional analysis of them. These five BrSWEET genes showed a notable up-regulation in roots after P. brassicae inoculation. Furthermore, these BrSWEET proteins were localized to the plasma membrane. Yeast functional complementation assays confirmed transport activity for glucose, fructose, or sucrose in four BrSWEETs, with the exception of BrSWEET2a. Mutants and silenced plants of BrSWEET1a, -11a, and -12a showed lower clubroot disease severity compared to wild-type plants, while gain-of-function Arabidopsis thaliana plants overexpressing these three BrSWEET genes exhibited significantly higher disease incidence and severity. Our findings suggested that BrSWEET1a, BrSWEET11a, and BrSWEET12a play pivotal roles in P. brassicae-induced gall formation, shedding light on the role of sugar transporters in host-pathogen interactions.

2.
Toxics ; 12(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38922075

RESUMO

Mycotoxins are a class of exogenous metabolites that are major contributors to foodborne diseases and pose a potential threat to human health. However, little attention has been paid to trace mycotoxin co-exposure situations in vivo. To address this, we devised a novel analytical strategy, both highly sensitive and comprehensive, for quantifying 67 mycotoxins in human plasma samples. This method employs isotope dilution mass spectrometry (IDMS) for approximately 40% of the analytes and utilizes internal standard quantification for the rest. The mycotoxins were classified into three categories according to their physicochemical properties, facilitating the optimization of extraction and detection parameters to improve analytical performance. The lowest limits of detection and quantitation were 0.001-0.5 µg/L and 0.002-1 µg/L, respectively, the intra-day precision ranged from 1.8% to 11.9% RSD, and the intra-day trueness ranged from 82.7-116.6% for all mycotoxins except Ecl, DH-LYS, PCA, and EnA (66.4-129.8%), showing good analytical performance of the method for biomonitoring. A total of 40 mycotoxins (including 24 emerging mycotoxins) were detected in 184 plasma samples (89 from infertile males and 95 from healthy males) using the proposed method, emphasizing the widespread exposure of humans to both traditional and emerging mycotoxins. The most frequently detected mycotoxins were ochratoxin A, ochratoxin B, enniatin B, and citrinin. The incidence of exposure to multiple mycotoxins was significantly higher in infertile males than in healthy subjects, particularly levels of ochratoxin A, ochratoxin B, and citrinin, which were significantly increased. It is necessary to carry out more extensive biological monitoring to provide data support for further study of the relationship between mycotoxins and male infertility.

3.
Int J Biol Macromol ; 272(Pt 1): 132834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838885

RESUMO

The development of novel packaging materials with antimicrobial properties is crucial in preventing the microbial-induced spoilage of fruits, vegetables, and foodborne illnesses. In this study, homojunction g-C3N4 (HCN) photocatalysts with excellent photocatalytic performance were incorporated into a matrix consisting of pullulan/chitosan (Pul/CS). These photocatalysts were then electrostatically spun onto polylactic acid (PLA) films to fabricate PLA@Pul/CS/HCN nanofibrous composite films. The design of the bilayer films aimed to combine the physical properties of PLA film with the excellent antibacterial properties of nanofiber films, thereby achieving synergistic advantages. The incorporation of the HCN photocatalysts resulted in enhanced hydrophobicity, barrier function, and mechanical properties of the composite films. Under visible light irradiation, the PLA@Pul/CS/HCN films exhibited approximately 3.43 log and 3.11 log reductions of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA), respectively, within 2 h. The excellent antimicrobial performance could be attributed to the synergistic effect of CS and the release of reactive oxygen species (ROS) from HCN. Moreover, the strawberries packaged in the PLA@Pul/CS/HCN film demonstrated diminished quality degradation and a prolonged shelf life following visible light irradiation treatment. This study will provide new insights into the exploration of safe and efficient antimicrobial food packaging.


Assuntos
Quitosana , Embalagem de Alimentos , Frutas , Glucanos , Luz , Poliésteres , Glucanos/química , Glucanos/farmacologia , Poliésteres/química , Quitosana/química , Quitosana/farmacologia , Frutas/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fragaria/microbiologia , Nanofibras/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Grafite , Compostos de Nitrogênio
4.
J Hazard Mater ; 476: 134902, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38909467

RESUMO

To investigate the metabolic transformation of cyclopiazonic acid (CPA) in the liver of different species and to supplement accurate risk assessment information, the metabolism of CPA in liver microsomes from four animals and humans was studied using the ultra-high-performance liquid chromatography-quadrupole/time-of-flight method. The results showed that a total of four metabolites were obtained, and dehydrogenation, hydroxylation, methylation, and glucuronidation were identified as the main metabolic pathways of CPA. Rat liver microsomes exhibited the highest metabolic capacity for CPA, with dehydrogenated (C20H18N2O3) and glucuronic acid-conjugated (C26H28N2O10) metabolites identified in all liver microsomes except chicken, indicating significant species metabolic differences. Moreover, C20H18N2O3 was only detected in the incubation system with cytochromes P450 3A4 (CYP3A4). The hydroxylated (C20H20N2O4) and methylated (C21H22N2O3) metabolites were detected in all incubation systems except for the CYP2C9, with CYP3A4 demonstrating the strongest metabolic capacity. The "cocktail" probe drug method showed that CPA exhibited a moderate inhibitory effect on the CYP3A4 (IC50 value = 8.658 µM), indicating that the substrate had a negative effect on enzyme activity. Our results provide new insights to understand the biotransformation profile of CPA in animals and humans.

5.
J Agric Food Chem ; 72(14): 8214-8224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557103

RESUMO

The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.


Assuntos
Depsipeptídeos , Micotoxinas , Fosfatidilinositol 3-Quinases , Tricotecenos , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Hep G2 , Micotoxinas/toxicidade , Micotoxinas/análise
6.
J Agric Food Chem ; 72(17): 10046-10054, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648503

RESUMO

Poisonous mushrooms containing α-amatoxin can be lethal, making it imperative to develop a rapid and sensitive detection method for α-amatoxin. Utilizing the DNA tetrahedral structure as its foundation, the aptamer allows controlled density and orientation. Consequently, we designed aptamer tetrahedral functionalized magnetic beads that specifically target α-amanitin to release complementary DNA (C-DNA) strands. These strands were then employed as primers to initiate rolling circle amplification (RCA) with fluorescent dyes. The combination of SYBR Green I detection probes facilitated the amplification of the detection signal, enhancing the detection sensitivity of the aptasensor. The calculated detection limit was determined to be 3 ng/mL, a magnitude lower than that of other aptasensors by 2 orders of magnitude. The aptasensor integrates the advantages of high sensitivity and specificity, offering a simple and reliable rapid detection method for α-amanitin analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Alfa-Amanitina/química , Nanoestruturas/química , DNA/química , Agaricales/química
7.
Int J Biol Macromol ; 264(Pt 1): 130477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428784

RESUMO

Multidrug-resistant (MDR) bacterial infections have become a significant threat to global healthcare systems. Here, we developed a highly efficient antimicrobial hydrogel using environmentally friendly garlic carbon dots, pectin, and acrylic acid. The hydrogel had a porous three-dimensional network structure, which endowed it with good mechanical properties and compression recovery performance. The hydrogel could adhere closely to skin tissues and had an equilibrium swelling ratio of 6.21, indicating its potential as a wound dressing. In particular, the bactericidal efficacy following 24-h contact against two MDR bacteria could exceed 99.99 %. When the hydrogel was applied to epidermal wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) on mice, a remarkable healing rate of 93.29 % was observed after 10 days. This was better than the effectiveness of the traditionally used antibiotic kanamycin, which resulted in a healing rate of 70.36 %. In vitro cytotoxicity testing and hemolysis assay demonstrated a high biocompatibility. This was further proved by the in vivo assay where no toxic side effects were observed on the heart, liver, spleen, lung, or kidney of mice. This eco-friendly and easy-to-prepare food-inspired hydrogel provides an idea for the rational use of food and food by-products as a wound dressing to control MDR bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Camundongos , Animais , Carbono/química , Hidrogéis/farmacologia , Hidrogéis/química , Pectinas/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico
8.
J Agric Food Chem ; 72(8): 4415-4425, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355417

RESUMO

Spherical nucleic acids (SNAs) have been used to construct various nanobiosensors with gold nanoparticles (AuNPs) as nuclei. The SNAs play a critical role in biosensing due to their various physical and chemical properties, programmability, and specificity recognition ability. In this study, CRISPR-responsive self-assembled spherical nucleic acid (CRISPR-rsSNA) detection probes were constructed by conjugating fluorescein-labeled probes to the surface of AuNPs to improve the sensing performance. Also, the mechanism of ssDNA and the role of different fluorescent groups in the self-assembly process of CRISPR-rsSNA were explored. Then, CRISPR-rsSNA and reverse transcription-recombinase polymerase amplification (RT-RPA) were combined to develop an ultrasensitive fluorescence-detection strategy for norovirus. In the presence of the virus, the target RNA sequence of the virus was transformed and amplified by RT-RPA. The resulting dsDNA activated the trans-cleavage activity of CRISPR cas12a, resulting in disintegrating the outer nucleic acid structure of the CRISPR-rsSNA at a diffusible rate, which released reporter molecules. Norovirus was quantitated by fluorescence detection. This strategy facilitated the detection of the norovirus at the attomolar level. An RT-RPA kit for norovirus detected would be developed based on this method. The proposed method would be used for the detection of different viruses just by changing the target RNA and crRNA of the CRISPR cas12a system which provided a foundation for high-throughput detection of various substances.


Assuntos
Nanopartículas Metálicas , Norovirus , Ácidos Nucleicos , Norovirus/genética , Ouro , Núcleo Celular , Técnicas de Amplificação de Ácido Nucleico , Sistemas CRISPR-Cas
9.
Biosens Bioelectron ; 249: 116005, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199079

RESUMO

The development of simple, fast, sensitive, and specific strategies for the detection of foodborne pathogenic bacteria is crucial for ensuring food safety and promoting human health. Currently, detection methods for Staphylococcus aureus still suffer from issues such as low specificity and low sensitivity. To address this problem, we proposed a sensitivity enhancement strategy based on double phage-displayed peptides (PDPs) co-targeting. Firstly, we screened two PDPs and analyzed their binding mechanisms through fluorescent localization, pull-down assay, and molecular docking. The two PDPs target S. aureus by binding to specific proteins on its outer membrane. Based on this phenomenon, a convenient and sensitive double PDPs colorimetric biosensor was developed. Double thiol-modified phage-displayed peptides (PDP-SH) enhance the aggregation of gold nanoparticles (AuNPs), whereas the specific interaction between the double PDPs and bacteria inhibits the aggregation of AuNPs, resulting in an increased visible color change before and after the addition of bacteria. This one-step colorimetric approach displayed a high sensitivity of 2.35 CFU/mL and a wide detection range from 10-2 × 108 CFU/mL. The combination with smartphone-based image analysis improved the portability of this method. This strategy achieves the straightforward, highly sensitive and portable detection of pathogenic bacteria.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Staphylococcus aureus/química , Técnicas Biossensoriais/métodos , Ouro/química , Colorimetria/métodos , Simulação de Acoplamento Molecular , Nanopartículas Metálicas/química , Peptídeos
10.
Anal Chim Acta ; 1290: 342203, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246741

RESUMO

Foodborne pathogenic bacteria are widespread in various foods, whose cross-contamination and re-contamination are critical influences on food safety. Rapid, accurate, and sensitive detection of foodborne pathogenic bacteria remains a topic of concern. CRISPR/Cas12a can recognize double-stranded DNA directly, showing great potential in nucleic acid detection. However, few studies have investigated the cleavage properties of CRISPR/Cas12a. In this study, the trans-cleavage properties of LbCas12a and AsCas12a were investigated to construct the detection methods for foodborne pathogenic bacteria. The highly sensitive fluorescent strategies for foodborne pathogens were constructed by analyzing the cleavage rates and properties of substrates at different substrate concentrations. Cas12a was activated in the presence of foodborne pathogenic target sequence was present, resulting in the cleavage of a single-stranded reporter ssDNA co-labelled by fluorescein quencher and fluorescein. The sensitivity and specificity of the Cas12a fluorescent strategy was investigated with Salmonella and Staphylococcus aureus as examples. The results showed that AsCas12a was slightly more capable of trans-cleavage than LbCas12a. The detection limits of AsCas12a for Salmonella and Staphylococcus aureus were 24.9 CFU mL-1 and 1.50 CFU mL-1, respectively. In all the seven bacteria, Staphylococcus aureus and Salmonella were accurately discriminated. The study provided a basis for constructing and improving the CRISPR/Cas12a fluorescence strategies. The AsCas12a-based detection strategy is expected to be a promising method for field detection.


Assuntos
Sistemas CRISPR-Cas , Infecções Estafilocócicas , Humanos , Fluorescência , Bactérias , Corantes , Fluoresceína , Staphylococcus aureus/genética
11.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108665

RESUMO

Mycotoxins are secondary metabolites produced by fungi in food and feed, which can cause serious health problems. Bioenzymatic degradation is gaining increasing popularity due to its high specificity, gentle degradation conditions, and environmental friendliness. We reviewed recently reported biosynthetic mycotoxin-degrading enzymes, traditional and novel expression systems, enzyme optimization strategies, food and feed applications, safety evaluation of both degrading enzymes and degradation products, and commercialization potentials. Special emphasis is given to the novel expression systems, advanced optimization strategies, and safety considerations for industrial use. Over ten types of recombinases such as oxidoreductase and hydrolase have been studied in the enzymatic hydrolysis of mycotoxins. Besides traditional expression system of Escherichia coli and yeasts, these enzymes can also be expressed in novel systems such as Bacillus subtilis and lactic acid bacteria. To meet the requirements of industrial applications in terms of degradation efficacy and stability, genetic engineering and computational tools are used to optimize enzymatic expression. Currently, registration and technical difficulties have restricted commercial application of mycotoxin-degrading enzymes. To overcome these obstacles, systematic safety evaluation of both biosynthetic enzymes and their degradation products, in-depth understanding of degradation mechanisms and a comprehensive evaluation of their impact on food and feed quality are urgently needed.

12.
J Agric Food Chem ; 71(44): 16752-16762, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37822021

RESUMO

Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.


Assuntos
Fumonisinas , Camundongos , Animais , Fumonisinas/análise , Memória Espacial , Esfingolipídeos , Fígado/metabolismo
13.
Ecotoxicol Environ Saf ; 264: 115456, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714035

RESUMO

Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and ß diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.


Assuntos
Metaboloma , Microbiota , Animais , Camundongos , Esporos Fúngicos , Metabolômica , Agricultura , Material Particulado
14.
Research (Wash D C) ; 6: 0216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732131

RESUMO

Insufficient sleep can produce a multitude of deleterious repercussions on various domains of human well-being. Concomitantly, the walnut (Juglans mandshurica) confers numerous salutary biological activities pertaining to sleep. Nevertheless, the sedative and hypnotic capacities of walnut's functional constituents remain obscure. In this investigation, we analyzed the sedative and hypnotic components of the walnut Diaphragma juglandis fructus and innovatively discovered a compound, defined as 3-hydroxy-4-iminobutyric acid (HIBA), which disrupts motor activity and enhances sleep duration by regulating the neurotransmitters (GABA, DA, etc.) within the brain and serum of mice. Subsequently, a metabolomics approach of the serum, basal ganglia, hypothalamus, and hippocampus as well as the gut microbiota was undertaken to unravel the underlying molecular mechanisms of sleep promotion. Our data reveal that HIBA can regulate the metabolism of basal ganglia (sphingolipids, acylcarnitines, etc.), possibly in relation to HIBA's influence on the gut microbiome (Muribaculum, Bacteroides, Lactobacillus, etc.). Therefore, we introduce a novel natural product, HIBA, and explicate the modulation of sleep promotion in mice based on the microbiota-gut-brain axis. This study contributes fresh insights toward natural product-based sleep research.

15.
iScience ; 26(8): 107263, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599819

RESUMO

Salmonella, a foodborne pathogen, has become a major public health concern because of its widespread drug resistance, including resistance to multiple drugs such as third-generation cephalosporin, ceftriaxone (CRO). However, the metabolic profile changes and associated mechanisms engendered by cephalosporin-resistant mutations remain uncharted. In this study, we have employed the LC-MS/MS metabolomics platform to determine the metabolic profiles of 138 strains of Salmonella. Our results show that metabolic profiles correspond to specific serotypes, sources, processing stages, and antibiotic resistance patterns. Notably, we observed that Salmonella Derby (S. Derby) with drug resistance to CRO has a different metabolic status with changes in glutathione biosynthesis. Specifically, glutathione oxidized (GSSG) and citrulline abundances are greatly suppressed in CRO-resistant S. Derby. Furthermore, exogenous GSSG or citrulline, but not glutathione reduced (GSH), restored the susceptibility of multidrug-resistant S. Derby to CRO. This study establishes a strategy based on functional metabolomics to manage the survival of antibiotic-resistant bacteria.

16.
Food Microbiol ; 115: 104328, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567621

RESUMO

Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.


Assuntos
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Sorogrupo , Transcriptoma , Testes de Sensibilidade Microbiana , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Metabolômica , Farmacorresistência Bacteriana Múltipla/genética
17.
Sci Total Environ ; 898: 165499, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454865

RESUMO

The consumption of rice contaminated with arsenic on a long-term basis has emerged as a pressing public health issue of global significance. Arsenic-induced urinary injury, particularly kidney damage, has received widespread attention. In this study, mice model under long-term arsenic exposure was established, mouse were exposed to rice arsenic (30 mg/kg) for 14 months. Changes of related metabolites were observed based on kidney metabolomics and lipidomics, and major biomarkers were screened by urine metabolomics. The results showed that phosphatidylethanolamine (PE) was significantly increased and phosphatidycholine (PC) and phosphatidylglycerol (PG) were significantly reduced after arsenic exposure, leading to related downstream lipid metabolism disorders. The metabolic pathways for amino acid and energy were observed to be impacted. In addition, metabolic disorders due to arsenic exposure may be associated with inherited neurometabolic disorders, such as D-2-hydroxyglutaric aciduria (D-2-HGA), and pyruvate carboxylase deficiency (PCD), which is predicted based on significant difference biomarkers (2-oxoglutarate, malic acid, and succinic acid) screened for urine. This study elucidates the mechanism of toxicity in the urinary system induced by arsenic exposure at nearly half life cycle, which furnishes crucial scientific evidence pertaining to the toxicity and risk evaluation associated with chronic exposure to the arsenic.

18.
J Agric Food Chem ; 71(22): 8580-8588, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226925

RESUMO

This study investigated the impact of baking factors on fumonisin B (FB) levels in corn crisps using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results indicated that both free and total FBs decreased with an increase in baking time and temperature, while glucose addition facilitated this reduction. Total FBs reached the lowest value of 109.69 ng/g after 50 min of baking. Conversely, covert FBs increased with baking time but decreased with glucose addition at high temperatures. Additionally, the highest levels of hydrolyzed FBs (HFBs), N-(carboxymethyl) FB1, and N-(deoxy-d-fructos-1-yl) FB1 occurred 20 min before decomposing and were detected in corn crisps baked at 160 °C. Glucose addition accelerated the transformation between free and covert FBs. Furthermore, the inhibition of NCM FB1 accumulation was accompanied by the promotion of NDF FB1 accumulation during corn crisp processing. These findings provide insights into the effect of baking factors on FBs and suggest strategies for reducing FB contamination in corn crisps.


Assuntos
Culinária , Zea mays , Zea mays/química , Glucose/química , Fumonisinas/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
19.
Small ; 19(29): e2207343, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058127

RESUMO

Drug resistance in pathogenic bacteria has become a major threat to global health. The misuse of antibiotics has increased the number of resistant bacteria in the absence of rapid, accurate, and cost-effective diagnostic tools. Here, an amplification-free CRISPR-Cas12a time-resolved fluorescence immunochromatographic assay (AFC-TRFIA) is used to detect drug-resistant Salmonella. Multi-locus targeting in combination crRNA (CcrRNA) is 27-fold more sensitive than a standalone crRNA system. The lyophilized CRISPR system further simplifies the operation and enables one-pot detection. Induction of nucleic acid fixation via differentially charged interactions reduced the time and cost required for flowmetric chromatography with enhanced stability. The induction of nucleic acid fixation via differentially charged interactions reduces the time and cost required for flowmetric chromatography with enhanced stability. The platform developed for the detection of drug-resistant Salmonella has an ultra-sensitive detection limit of 84 CFU mL-1 within 30 min, with good linearity in the range of 102 -106 CFU mL-1 . In real-world applications, spiked recoveries range from 76.22% to 145.91%, with a coefficient of variation less than 10.59%. AFC-TRFIA offers a cost-effective, sensitive, and virtually equipment-independent platform for preventing foodborne illnesses, screening for drug-resistant Salmonella, and guiding clinical use.


Assuntos
Doenças Transmitidas por Alimentos , Ácidos Nucleicos , Humanos , Antibacterianos , Fluorescência , Salmonella/genética , Técnicas de Amplificação de Ácido Nucleico
20.
J Hazard Mater ; 451: 131126, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878029

RESUMO

The rapid generation of high-quality target antibodies is essential for research employing immunoassays. The use of recombinant antibody technology that relies on genetic engineering is one such means to produce high-quality antibodies. Obtaining the gene sequence information of immunoglobulin is a prerequisite for the preparation of genetically engineered antibodies. At present, many researchers have shared their amino acid sequence data for various high-performance antibodies and their related properties. In this study, we obtained the protein sequence of a variable region of a 17 ß-estradiol (E2) antibody from the Protein Data Bank (PDB) and subsequently constructed heavy (H) and light (L) chain expression vectors through codon optimization. The transient expression, purification, and performance identification of the immunoglobulin G (IgG), antigen-binding fragment (Fab), and single-chain variable fragment (scFv) antibodies were carried out, respectively. The effects of the different expression vectors on the expression yield of the IgG antibody were further compared. Among them, the expression yield based on the pTT5 vector was the highest, reaching 27 mg/L. Based on the expressed IgG and Fab antibodies, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) standard curve of E2 was constructed, and the half-maximal inhibitory concentrations (IC50) for these two antibodies were determined to be 0.129 ng/mL and 0.188 ng/mL, respectively. In addition, an immunochromatographic assay (ICA) based on the IgG antibody was constructed with an IC50 of 3.7 ng/mL. Therefore, in featuring the advantages of simplicity, high efficiency, rapid obtainment, and high titer yield, we propose the system for the rapid generation of high-quality recombinant antibodies by reusing the published antibody information and show that it has good implementation prospects in improving upon existing immunoassay techniques.


Assuntos
Estradiol , Anticorpos de Cadeia Única , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Imunoensaio , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA