Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neural Syst ; 30(2): 2050002, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31937155

RESUMO

In this study, we investigated the dynamic properties of oscillatory activities in the scalp electro-encephalographs (EEGs) of 20 participants involved in a novel dynamic manipulating task using a physical interface and a virtual feedback. The complexity of such a task a rises from the unexpected relationship between the magnitude of the motion and the feedback. The characterization of complex patterns arising from EEG is an important problem in identifying different mental intentions. We proposed a scaling analysis of phase fluctuation in the scalp EEG to discriminate the network states related to different EEG patterns, which correspond to manipulating the task with right or left movement intention. These intentions are generated while the participant is engaged in such a complex task. The phase characterization method was used to calculate the instantaneous phase from the operational EEG. Then, functional brain networks (FBNs) of 20 subjects based on the task-related EEG were constructed by phase synchronization. The degree features representing the structures and scaling components of brain networks are sensitive to the EEG patterns with left or right motor intention. The correlation between features and mental intentions was investigated by discriminant analysis. For 20 subjects, the average accuracy of state detection is 0.8541 ± 0.0398, and the average mean-squared error (MSE) is 0.6036 ± 0.1226. The brain state depicted by the results is related to high awareness, the phase characterization is of the effectiveness in EEG processing and FBN construction and the difference of control intentions can be explored by the phase characterization method. This finding may be relevant to understanding some neuronal mechanisms underlying the attention and some applications of closed-loop control for the safety operation of tools.


Assuntos
Encéfalo/fisiologia , Sincronização de Fases em Eletroencefalografia , Eletroencefalografia/métodos , Atividade Motora/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Masculino , Modelos Teóricos , Vias Neurais/fisiologia , Interface Usuário-Computador , Adulto Jovem
2.
Sensors (Basel) ; 17(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635623

RESUMO

Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring.

3.
Sensors (Basel) ; 16(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27983577

RESUMO

In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA