RESUMO
Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spines morphogenesis was confirmed using gene editing technology. Sectioning and cell wall component detection were used to analyse the main reason of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMict can affect trichome development and cuticle biosynthesis in the same pathway. Our findings provide important background information for further researching on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.
RESUMO
In this study, the Fox gene family of Ruditapes philippinarum was identified by bioinformatics analysis and genome data. The results showed that a total of 21 Fox genes were identified in R. philippinarum, which were divided into 16 subfamilies, including two members of Foxa subfamily (Foxa1, Foxa2), three members of Foxl subfamily (Foxl1b, Foxl1a, FOXL2), three members of Foxn subfamily (FOXN3, FOX4A, Foxn4b) and one member of other families. The chromosome distribution, domains, conserved motifs, introns, exons and protein tertiary structures of these 21 Fox genes were predicted. By analyzing the RNA-seq data of R. philippinarum, it was found that the Fox gene family was differentially expressed in different tissues, different developmental stages and under heat and cold stress. Most of Fox genes were highly expressed in four tissues: labial palp, gonad, gill and foot. Most of the Fox genes were highly expressed in blastula stage. Most of the Fox genes were highly expressed in high temperature group of two populations, and Foxo, FOXG1 were highly expressed in low temperature group. In addition, qPCR showed that the expression levels of Foxo and Foxj1b genes increased significantly under acute cold stress. Therefore, we speculate that Fox genes may play important roles in embryo development and the temperature stress of R. philippinarum, and this study provides a basis for further exploring the molecular mechanism of low temperature tolerance mediated by Fox.
RESUMO
BACKGROUND: Surgical site infection (SSI) is the prevailing complication that occurs after surgery and significantly escalates healthcare expenses. Published meta-analyses and international standards vary in their recommendations for the most effective preoperative skin antiseptic solution and concentration. OBJECTIVE: The aim of this systematic review and meta-analysis is to assess the effectiveness of Chlorhexidine-alcohol compared to Aqueous/alcoholic iodine solutions in preventing post-operative surgical site infections. METHODS: A systematic search was conducted using four electronic databases (PubMed, EMBASE, Scopus, and Cochrane Library) to select publications published in peer-reviewed journals. The risk ratio (RR) was calculated, along with their 95% confidence intervals. We assessed heterogeneity using Cochrane Q and I2 statistics and the appropriate P-value. The analysis used RevMan 5.4. RESULTS: The current meta-analysis includes 14 Randomized controlled trials (RCTs) comparing either 2-2.5% chlorhexidine alcohol with aqueous/alcoholic iodine. It was demonstrated that the CAG-using group had an overall lower incidence of post-operative surgical site infections compared to the iodine-using group (RR=0.30, 95% CI=0.20 to 0.46, I2=95%, P<0.00001). It exhibits comparable efficacy across various surgical procedures, as evidenced by its RR of 0.25 [95% CI 0.15 to 0.41], I2=51%, and P<0.0001 for general surgery, RR=0.47 [95% CI 0.32 to 0.67], I2=82%, P=0.0002 for caesarean section and RR of 0.47 [95% CI 0.34 to 0.65], I2=76% and P<0.00001 for additional surgical procedures, including neurosurgery, orthopedic surgery etc. CONCLUSION: This meta-analysis suggests using either 2·0-2·5% Chlorhexidine in alcohol instead of aqueous, alcoholic iodine to prevent SSIs in adult patients undergoing surgery. Chlorhexidine in alcohol worked effectively for general surgery, cesarean sections, and other surgeries. Thus, preoperative skin cleansing with Chlorhexidine alcohol minimizes postoperative SSIs and bacterial colonization in diverse procedures.
RESUMO
Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.
Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Penicillium , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Penicillium/metabolismo , Penicillium/química , Humanos , Vias Biossintéticas/efeitos dos fármacos , Interleucina-1beta/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Estrutura MolecularRESUMO
An unprecedented solvent-tuned electrochemical method for selective C(sp3)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current. A plausible reaction mechanism has been proposed with the help of radical capture and cyclic voltammetry experiments.
RESUMO
BACKGROUND: Photodynamic therapy (PDT) efficacy of bismuth sulfide (Bi2S3) semiconductor has been severely restricted by its electron-hole pairs (e--h+) separation inefficiency and oxygen (O2) deficiency in tumors, which greatly hinders reactive oxygen species (ROS) generation and further clinical application of Bi2S3 nanoparticles (NPs) in biomedicine. RESULTS: Herein, novel Bi2S3/titanium carbide (Ti3C2) two-dimensional nano-heterostructures (NHs) are designed to realize multimode PDT of synchronous O2 self-supply and ROS generation combined with highly efficient photothermal tumor elimination for hypoxic tumor therapy. Bi2S3/Ti3C2 NHs were synthesized via the in situ synthesis method starting from Ti3C2 nanosheets (NSs), a classical type of MXene nanostructure. Compared to simple Bi2S3 NPs, Bi2S3/Ti3C2 NHs significantly extend the absorption to the near-infrared (NIR) region and enhance the photocatalytic activity owing to the improved photogenerated carrier separation, where the hole on the valence band (VB) of Bi2S3 can react with water to supply O2 for the electron on the Ti3C2 NSs to generate ·O2- and ·OH through electron transfer. Furthermore, they also achieve 1O2 generation through energy transfer due to O2 self-supply. After the modification of triphenylphosphium bromide (TPP) on Bi2S3/Ti3C2 NHs, systematic in vitro and in vivo evaluations were conducted, revealing that the synergistic-therapeutic outcome of this nanoplatform enables complete eradication of the U251 tumors without recurrence by NIR laser irradiation, and it can be used for computed tomography (CT) imaging because of the strong X-ray attenuation ability. CONCLUSION: This work expands the phototherapeutic effect of Bi2S3-based nanoplatforms, providing a new strategy for hypoxic tumor theranostics.
Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Brometos/uso terapêutico , Terapia Fototérmica , Espécies Reativas de Oxigênio , Titânio/farmacologia , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Raios Infravermelhos , Linhagem Celular TumoralRESUMO
BACKGROUND: The Yi people are a sociolinguistic group living in Mile City, which is their typical settlement in southeastern Yunnan, China. Over the long history of using medicinal plants, the Yi people have accumulated and developed a wealth of traditional medicinal knowledge, which has played a vital role in their health care. However, only a few studies have been performed to systematically document the medicinal plants commonly used by the Yi people. This study provides fundamental data for the development and application of ethnomedicine as well as supports the conservation of the traditional medical knowledge of the Yi people. METHODS: This study was conducted from May 2020 to August 2022 and involved five townships in Mile. Information regarding medicinal plants was obtained through semistructured interviews, key informant interviews, and participatory observation. The collected voucher specimens were identified using the botanical taxonomy method and deposited in the herbarium. Ethnobotanical data were analyzed using informant consensus factor, relative frequency of citation, and fidelity level. RESULTS: In total, 114 informants distributed in five townships of Mile were interviewed. The Yi people used 267 medicinal plant species belonging to 232 genera and 104 families to treat various diseases. Asteraceae, Lamiaceae, and Fabaceae were the most commonly used plant families by the Yi people. In addition, herbs were most commonly used by the Yi people. Whole plants and roots were the preferred medicinal parts. Decoctions were the most common method of herbal medicine preparation. There are 49 different recorded diseases treated by Yi medicinal plants, and among them, respiratory diseases, rheumatism, traumatic injury, fractures, and digestive system diseases have the largest number of species used. A quantitative analysis demonstrated that plants such as Zingiber officinale, Lycopodium japonicum, Aconitum carmichaelii, Panax notoginseng, Cyathula officinalis, and Leonurus japonicus played crucial roles in disease prevention and treatment. CONCLUSION: Traditional knowledge of medicinal plants is closely associated with the social culture of the local Yi people. The medicinal plants used for health care in the study area were diverse. Local healers were skilled at using medicinal plants to treat various diseases. Their treatment methods were convenient and unique, exhibiting distinctive regional characteristics. However, the inheritance of their traditional medicinal knowledge and protection of wild medicinal plant resources are facing serious challenges, including the decreasing number of local healers, aging of healers, lack of successors, and excessive harvesting of medicinal plant resources. This ethnobotanical survey provides a useful reference for the sustainable utilization and protection of medicinal plant resources in Mile and the inheritance of traditional medicinal knowledge of the Yi people.
Assuntos
Plantas Medicinais , População do Sudeste Asiático , Humanos , China , Etnobotânica/métodos , Medicina Tradicional/métodos , Fitoterapia/métodos , Preparações de PlantasRESUMO
The epidermis of a deep burn wound is entirely absent and the dermal tissue sustains significant damage, accompanied by a substantial amount of tissue exudate. Due to the excessively humid environment, the formation of a scab on the wound becomes challenging, leaving it highly vulnerable to external bacterial invasion. In this work, a core-shell dual-drug-loaded nanofiber dressing was prepared by electrospinning technology for the synergistic treatment of a deep burn. The shell layer consists of polycaprolactone and chitosan encapsulating asiaticoside, with the core layer comprising the clathrate of 2-hydroxypropyl-ß-cyclodextrin and curcumin. Upon application to the wound, the dual-drug-loaded nanofiber dressing exhibited rapid release of asiaticoside, stimulating collagen deposition and promoting tissue repair. The core-shell structure and clathrate configuration ensured sustained release of curcumin, providing antibacterial and anti-inflammatory functions for the wound. The mechanical strength, broad-spectrum antibacterial ability, cell proliferation, and adhesion ability of the nanofiber dressing showed its potential as a medical dressing. This dressing also exhibited excellent wound healing promoting effects in the SD rat burn model. This paper provides a strategy for burn wound healing.
Assuntos
Queimaduras , Curcumina , Nanofibras , Triterpenos , Ratos , Animais , Nanofibras/uso terapêutico , Nanofibras/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Ratos Sprague-Dawley , Queimaduras/tratamento farmacológico , Antibacterianos/uso terapêutico , BandagensRESUMO
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Assuntos
Ascomicetos , Cucumis sativus , Cucumis sativus/genética , Fosfatos , Ascomicetos/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
The microRNA novel-3 (miRn-3) is a 23-nt small endogenous noncoding RNA of unknown function. To enrich our knowledge of the regulatory function of miRn-3 in the process of wound healing, the sea cucumber Apostichopus japonicus was used as a target model in this study. Gelsolin (AjGSN), a potential target gene of miRn-3, was cloned and characterized, and the interaction between miRn-3 and AjGSN was verified. The function of the miRn-3/AjGSN axis in regulating cutaneous wound healing was explored in the sea cucumber A. japonicus. The results showed that 1) the full-length cDNA of AjGSN was 2935 bp, with a high level of sequence conservation across the echinoderms; 2) miRn-3 could bind to the 3'UTR of AjGSN and negatively regulate the expression of AjGSN; 3) overexpression of miRn-3 and inhibition of the expression of AjGSN suppressed cutaneous wound healing in A. japonicus. In general, all observations of this study suggest that miRn-3 plays an important role in the early process of cutaneous wound healing by negatively targeting AjGSN, and that it may be a potential biomarker in wound healing.
Assuntos
MicroRNAs , Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/metabolismo , Pepinos-do-Mar/genética , Pepinos-do-Mar/metabolismo , Gelsolina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cicatrização/genética , Imunidade InataRESUMO
This study reports a thermostable glucose-stimulated ß-glucosidase, BglY442, from hot-spring metagenomic data that was cloned and expressed in Escherichia coli BL21 (DE3). The molecular mass of recombinant BglY442 was 69.9 kDa and was used in the production of gardenia blue. The recombinant BglY442 showed its maximum activity at pH 6.0 and 75 °C, maintained 50 % activity at 70 °C for 36 h, presented over 90 % activity in a broad pH range and a wide range of pH stability. Moreover, BglY442 exhibited excellent tolerance toward methanol and ethanol. The specific activity of BglY442 was 235 U/mg at pH 6.0 and 75 °C with 10 mM pNPG as substrate. BglY442 activity increased by over fourfold with 2 M glucose or xylose. Specifically, the enzyme kinetics of BglY442 seem to be non-Michaelis-Menten kinetics or atypical kinetics because the Michaelis-Menten saturation kinetics were not observed with pNPG, oNPG or geniposide as substrates. Under optimum conditions, geniposide was dehydrated by BglY442 and reacted with nine amino acids respectively by the one-pot method. Only the Arg or Met derived pigments showed bright blue, and these two pigments had similar ultraviolet absorption spectra. The OD590 nm of GB was detected to be 1.06 after 24 h with the addition of Arg and 1.61 after 36 h with the addition of Met. The intermediate was elucidated and identified as ginipin. Molecular docking analysis indicated that the enzyme had a similar catalytic mechanism to the reported GH1 Bgls. BglY442 exhibited potential for gardenia blue production by the one-pot method. With outstanding thermostability and glucose tolerance, BglY442 should be considered a potential ß-glucosidase in biotechnology applications.
Assuntos
Gardenia , Glucose , Iridoides , Glucose/farmacologia , Proteínas Recombinantes/metabolismo , beta-Glucosidase/metabolismo , Metagenoma , Simulação de Acoplamento Molecular , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato , Temperatura , CinéticaRESUMO
Hypoxia is a harmful result of anthropogenic climate change. With the expansion of global low-oxygen zones (LOZs), many organisms have faced unprecedented challenges affecting their survival and reproduction. Extensive research has indicated that oxygen limitation has drastic effects on aquatic animals, including on their development, morphology, behavior, reproduction, and physiological metabolism. In this review, the global distribution and formation of LOZs were analyzed, and the impacts of hypoxia on aquatic animals and the molecular responses of aquatic animals to hypoxia were then summarized. The commonalities and specificities of the response to hypoxia in aquatic animals in different LOZs were discussed lastly. In general, this review will deepen the knowledge of the impacts of hypoxia on aquaculture and provide more information and research directions for the development of fishery resource protection strategies.
Assuntos
Aquicultura , Ecossistema , Animais , Hipóxia/veterinária , Mudança Climática , OxigênioRESUMO
Background: Gastrodia elata, known as a rootless, leafless, achlorophyllous and fully mycoheterotrophic orchid, needs to establish symbionts with particular Armillaria species to acquire nutrition and energy. Previous research findings had approved that ethylene (ET) played an important role in plant-fungi interaction and some receptors of ET had been discovered in microorganisms. However, the molecular mechanisms underlying the role of ET in the interaction between G. elata and Armillaria species remain unknown. Methods: Exiguous ethephon (ETH) was added to agar and liquid media to observe the morphological features of mycelium and count the biomass respectively. Mycelium cultured in liquid media with exiguous ETH (0.1 ppm, 2.0 ppm, 5.0 ppm) were chosen to perform whole-transcriptome profiling through the RNA-seq technology (Illumina NGS sequencing). The DEGs of growth-related genes and candidate ET receptor domains were predicted on SMART. Results: ETH-0.1 ppm and ETH-2 ppm could significantly improve the mycelium growth of A. gallica 012m, while ETH-5 ppm inhibited the mycelium growth in both solid and liquid media. The number of up-regulated or down-regulated genes increased along with the concentrations of ETH. The growth of mycelia might benefit from the up-regulated expression of Pyr_redox (Pyridine nucleotide-disulphide oxidoreductase), GAL4 (C6 zinc finger) and HMG (High Mobility Group) genes in the ETH-0.1 ppm and ETH-2 ppm. Therefore, the growth of mycelia might be impaired by the down-regulated expression of ZnF_C2H2 and ribosomal protein S4 proteins in the ETH-5 ppm. Seven ET receptor domains were predicted in A. gallica 012m. Based on cluster analysis and comparative studies of proteins, the putative ETH receptor domains of A. gallica 012m have a higher homologous correlation with fungi. Conclusions: The responses of A. gallica 012m to ETH had a concentration effect similar to the plants' responses to ET. Therefore, the number of up-regulated or down-regulated genes are increased along with the concentrations of ETH. Seven ET receptor protein domains were predicted in the genome and transcriptome of A. gallica 012m. We speculate that ETH receptors exist in A. gallica 012m and ethylene might play an important role in the plant-fungi interaction.
Assuntos
Armillaria , Transcriptoma/genética , Fungos , Perfilação da Expressão Gênica , Etilenos/farmacologiaRESUMO
Cell polarity development is the prerequisite for cell differentiation and generating biodiversity. In the model bacterium Caulobacter crescentus, the polarization of the scaffold protein PopZ during the predivisional cell stage plays a central role in asymmetric cell division. However, our understanding of the spatiotemporal regulation of PopZ localization remains incomplete. In the current study, a direct interaction between PopZ and the new pole scaffold PodJ is revealed, which plays a primary role in triggering the new pole accumulation of PopZ. The coiled-coil 4-6 domain in PodJ is responsible for interacting with PopZ in vitro and promoting PopZ transition from monopolar to bipolar in vivo. Elimination of the PodJ-PopZ interaction impairs the PopZ-mediated chromosome segregation by affecting both the positioning and partitioning of the ParB-parS centromere. Further analyses of PodJ and PopZ from other bacterial species indicate this scaffold-scaffold interaction may represent a widespread strategy for spatiotemporal regulation of cell polarity in bacteria. IMPORTANCE Caulobacter crescentus is a well-established bacterial model to study asymmetric cell division for decades. During cell development, the polarization of scaffold protein PopZ from monopolar to bipolar plays a central role in C. crescentus asymmetric cell division. Nevertheless, the spatiotemporal regulation of PopZ has remained unclear. Here, we demonstrate that the new pole scaffold PodJ functions as a regulator in triggering PopZ bipolarization. The primary regulatory role of PodJ was demonstrated in parallel by comparing it with other known PopZ regulators, such as ZitP and TipN. Physical interaction between PopZ and PodJ ensures the timely accumulation of PopZ at the new cell pole and the inheritance of the polarity axis. Disruption of the PodJ-PopZ interaction impaired PopZ-mediated chromosome segregation and may lead to a decoupling of DNA replication from cell division during the cell cycle. Together, the scaffold-scaffold interaction may provide an underlying infrastructure for cell polarity development and asymmetric cell division.
Assuntos
Caulobacter crescentus , Caulobacter crescentus/genética , Polaridade Celular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular , Segregação de Cromossomos , Diferenciação CelularRESUMO
Multiple sclerosis (MS) is an inflammatory-mediated demyelinating disease of the central nervous system (CNS). Although studies have demonstrated that microglia facilitate remyelination in demyelinating diseases, the underlying mechanisms are still not fully characterized. We found that aryl hydrocarbon receptor (AhR), an environment sensor, was upregulated within the corpus callosum in the cuprizone model of CNS demyelination, and upregulated AhR was mainly confined to microglia. Deletion of AhR in adult microglia inhibited efficient remyelination. Transcriptome analysis using RNA-seq revealed that AhR-deficient microglia displayed impaired gene expression signatures associated with lysosome and phagocytotic pathways. Furthermore, AhR-deficient microglia showed impaired clearance of myelin debris and defected phagocytic capacity. Further investigation of target genes of AhR revealed that spleen tyrosine kinase (SYK) is the downstream effector of AhR and mediated the phagocytic capacity of microglia. Additionally, AhR deficiency in microglia aggravated CNS inflammation during demyelination. Altogether, our study highlights an essential role for AhR in microglial phagocytic function and suggests the therapeutic potential of AhR in demyelinating diseases.
Assuntos
Doenças Desmielinizantes , Receptores de Hidrocarboneto Arílico , Remielinização , Animais , Camundongos , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Remielinização/fisiologiaRESUMO
Timely and accurate detection of SARS-CoV-2 variants of concern (VOCs) is urgently needed for pandemic surveillance and control. Great efforts have been made from a mass of scientists in increasing the detection sensitivity and operability, and reducing the turn-around time and cost. Here, we report a nucleic acid testing-based method aiming to detect and discriminate SARS-CoV-2 mutations by combining RT-RPA and CRISPR-Cas12a detecting assays (RRCd). With a detection limit of 10 copies RNA/reaction, RRCd was validated in 194 clinical samples, showing 89% positive predictive agreement and 100% negative predictive agreement, respectively. Critically, using specific crRNAs, representatives of single nucleotide polymorphisms and small deletions in SARS-CoV-2 VOCs including N501Y, T478K and ΔH69-V70 were discriminated by RRCd, demonstrating 100% specificity in clinical samples with C t < 33. The method completes within 65 min and could offer visible results without using any electrical devices, which probably facilitate point-of-care testing of SARS-CoV-2 variants and other epidemic viruses.
RESUMO
Diagnosis of primary brain tumors relies heavily on histopathology. Although various computational pathology methods have been developed for automated diagnosis of primary brain tumors, they usually require neuropathologists' annotation of region of interests or selection of image patches on whole-slide images (WSI). We developed an end-to-end Vision Transformer (ViT) - based deep learning architecture for brain tumor WSI analysis, yielding a highly interpretable deep-learning model, ViT-WSI. Based on the principle of weakly supervised machine learning, ViT-WSI accomplishes the task of major primary brain tumor type and subtype classification. Using a systematic gradient-based attribution analysis procedure, ViT-WSI can discover diagnostic histopathological features for primary brain tumors. Furthermore, we demonstrated that ViT-WSI has high predictive power of inferring the status of three diagnostic glioma molecular markers, IDH1 mutation, p53 mutation, and MGMT methylation, directly from H&E-stained histopathological images, with patient level AUC scores of 0.960, 0.874, and 0.845, respectively.
RESUMO
The transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel that is activated by capsaicin (CAP), the main component of chili pepper. Despite studies in several neurological diseases, the role of TRPV1 in demyelinating diseases remains unknown. Herein, we reported that TRPV1 expression was increased within the corpus callosum during demyelination in a cuprizone (CPZ)-induced demyelination mouse model. TRPV1 deficiency exacerbated motor coordinative dysfunction and demyelination in CPZ-treated mice, whereas the TRPV1 agonist CAP improved the behavioral performance and facilitated remyelination. TRPV1 was predominantly expressed in Iba1+ microglia/macrophages in human brain sections of multiple sclerosis patients and mouse corpus callosum under demyelinating conditions. TRPV1 deficiency decreased microglial recruitment to the corpus callosum, with an associated increase in the accumulation of myelin debris. Conversely, the activation of TRPV1 by CAP enhanced the recruitment of microglia to the corpus callosum and potentiated myelin debris clearance. Using real-time live imaging we confirmed an increased phagocytic function of microglia following CAP treatment. In addition, the expression of the scavenger receptor CD36 was increased, and that of the glycolysis regulators Hif1a and Hk2 was decreased. We conclude that TRPV1 is an important regulator of microglial function in the context of demyelination and may serve as a promising therapeutic target for demyelinating diseases such as multiple sclerosis.
Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Humanos , Camundongos , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Canais de Cátion TRPV , Capsaicina/farmacologiaRESUMO
Huperzine A (HupA) is a natural acetylcholinesterase inhibitor (AChEI) with the advantages of high efficiency, selectivity as well as reversibility and can exhibit significant therapeutic effects against certain neurodegenerative diseases. It is also beneficial in reducing the neurological impairment and neuroinflammation of experimental autoimmune encephalomyelitis (EAE), a classic model for multiple sclerosis (MS). However, whether HupA can directly regulate oligodendrocyte differentiation and maturation and promote remyelination has not been investigated previously. In this study, we have analyzed the potential protective effects of HupA on the demylination model of MS induced by cuprizone (CPZ). It was found that HupA significantly attenuated anxiety-like behavior, as well as augmented motor and cognitive functions in CPZ mice. It also decreased demyelination and axonal injury in CPZ mice. Moreover, in CPZ mice, HupA increased mRNA levels of the various anti-inflammatory cytokines (Arg1, CD206) while reducing the levels of different pro-inflammatory cytokines (iNOS, IL-1ß, IL-18, CD16, and TNF-α). Mecamylamine, a nicotinic acetylcholinergic receptor antagonist, could effectively reverse the effects of HupA. Therefore, we concluded that HupA primarily exerts its therapeutic effects on multiple sclerosis through alleviating demyelination and neuroinflammation.