Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405738, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850230

RESUMO

The anion exchange membrane water electrolysis is widely regarded as the next-generation technology for producing green hydrogen. The OH- conductivity of the anion exchange membrane plays a key role in the practical implementation of this device. Here, we present a series of Z-S-x membranes with dibenzothiophene groups. These membranes contain sulfur-enhanced hydrogen bond networks that link surrounding surface site hopping regions, forming continuous OH- conducting highways. Z-S-20 has a high through-plane OH- conductivity of 182 ± 28 mS cm-1 and ultralong stability of 2650 h in KOH solution at 80 °C. Based on rational design, we achieved a high PGM-free alkaline water electrolysis performance of 7.12 A cm-2 at 2.0 V in a flow cell and demonstrated durability of 650 h at 2 A cm-2 at 40 °C with a cell voltage increase of 0.65 mV/h.

2.
Small ; : e2402537, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711307

RESUMO

Cu-based catalysts are the most intensively studied in the field of electrocatalytic CO2 reduction reaction (CO2RR), demonstrating the capacity to yield diverse C1 and C2+ products albeit with unsatisfactory selectivity. Manipulation of the oxidation state of Cu sites during CO2RR process proves advantageous in modulating the selectivity of productions, but poses a formidable challenge. Here, an oxygen spillover strategy is proposed to enhance the oxidation state of Cu during CO2RR by incorporating the oxygen donor Sb2O4. The Cu-Sb bimetallic oxide catalyst attains a remarkable CO2-to-CO selectivity approaching unity, in stark contrast to the diverse product distribution observed with bare CuO. The exceptional Faradaic efficiency of CO can be maintained across a wide range of potential windows of ≈700 mV in 1 m KOH, and remains independent of the Cu/Sb ratio (ranging from 0.1:1 to 10:1). Correlative calculations and experimental results reveal that oxygen spillover from Sb2O4 to Cu sites maintains the relatively high valence state of Cu during CO2RR, which diminishes the binding strength of *CO, thereby achieving heightened selectivity in CO production. These findings propose the role of oxygen spillover in CO2RR over Cu-based catalysts, and shed light on the rational design of highly selective CO2 reduction catalysts.

3.
ChemSusChem ; : e202400735, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771427

RESUMO

Large-scale hydrogen production through water splitting represents an optimal approach for storing sustainable but intermittent energy sources. However, water oxidation, a complex and sluggish reaction, poses a significant bottleneck for water splitting efficiency. The impact of outer chemical environments on the reaction kinetics of water oxidation catalytic centers remains unexplored. Herein, chemical environment impacts were integrated by featuring methylpyridinium cation group (Py+) around the classic Ru(bpy)(tpy) (bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) water oxidation catalyst on the electrode surface via electrochemical co-polymerization. The presence of Py+ groups could significantly enhance the turnover frequencies of Ru(bpy)(tpy), surpassing the performance of typical proton acceptors such as pyridine and benzoic acid anchored around the catalyst. Mechanistic investigations reveal that the flexible internal proton acceptor anions induced by Py+ around Ru(bpy)(tpy) are more effective than conventionally anchored proton acceptors, which promoted the rate-determining proton transfer process and enhanced the rate of water nucleophilic attack during O-O bond formation. This study may provide a novel perspective on achieving efficient water oxidation systems by integrating cations into the outer chemical environments of catalytic centers.

4.
Adv Mater ; : e2310619, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

5.
Chem Commun (Camb) ; 60(42): 5506-5509, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690677

RESUMO

An innovative method for the fabrication of a catalyst-sensitizer dyad-based photoelectrode was developed by using the coordinated interaction between the pyridine-2,6-dicarboxylic group and Sn4+. A dyad (C1 + PDI) was loaded on the mesoporous BiFeO3 (BFO) photocathode for light-driven H2 generation. The dyad could expand the light absorption range and promote the surface charge separation of BFO, resulting in an enhanced photocurrent.

6.
Chem Commun (Camb) ; 60(48): 6162-6165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804570

RESUMO

A water oxidation catalyst Ru-bcs (bcs = 2,2'-bipyridine-6'-carboxylate-6-sulfonate) with a hybrid ligand was reported. Ru-bcs utilizes the electron-donating properties of carboxylate ligands and the on-demand coordination feature of sulfonate ligands to enable a low onset potential of 1.21 V vs. NHE and a high TOF over 1000 s-1 at pH 7. The adaptive chemistry uncovered in this work provides new perspectives for developing molecular catalysts with high efficiency under low driving forces.

7.
JACS Au ; 4(4): 1405-1412, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665674

RESUMO

Achieving the Sabatier optimal of a chemical reaction has been the central topic in heterogeneous catalysis for a century. However, this ultimate goal was greatly hindered in previous catalyst design strategies since the active sites indeed changed. Fortunately, the magneto-catalytic effect (MCE) provides a promising solution to this long-standing challenge. Recent research suggests that the performance of ferromagnetic catalysts is capable to be promoted without changing its chemical structure. Herein, we use time-dependent density functional perturbation theory (TDDFPT) calculations to elucidate that a partially demagnetized (DM) ferromagnet could be a Sabatier optimal catalyst. Using ammonia synthesis as the model reaction, we determined the activity of Cobalt at each DM state by including the magnetic thermal excitations via magnon analysis, making the 55% DM Co to the genuine Sabatier optimal. As an essential but underexcavated phenomenon in heterogeneous catalysis, the MCE will open a new avenue to design high-performance catalysts.

8.
RSC Adv ; 14(17): 12158-12170, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628484

RESUMO

Vanadium redox flow battery (VRFB) is a highly suitable technology for energy storage and conversion in the application of decoupling energy and power generation. However, the sluggish reaction kinetics of redox couples is one of the bottlenecks hindering the commercialization of VFFBs. Developing efficient electrode is a promising method to improve the battery performance. In this work, a reduced graphene oxide/Mxene hybrid-decorated graphite felt (rGO/Mxene@GF) is designed to facilitate the kinetics of redox reaction. The electrocatalytic activity and mass transfer of the prepared electrode are investigated through experiment and simulation methods. The results indicate that the favorable mass transfer and the synergistic effect between rGO and Ti3C2Tx Mxene remarkably improve the performance of electrode. The flow cell with rGO/Mxene@GF delivers a good stability up to 100 cycles with a coulombic, voltage, and energy efficiency of 91.6%, 82.7%, and 75.8%, respectively, at a current density of 80 mA cm-2. These findings suggest that the as-prepared rGO/Mxene@GF holds a good application potential in VRFB and provides a promising approach to design efficient electrode for electrochemical devices.

9.
Nano Lett ; 24(20): 6051-6060, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38682868

RESUMO

Photoelectrochemical (PEC) cells provide a promising solution for the synthesis of hydrogen peroxide (H2O2). Herein, an integrated photocathode of p-type BiVO4 (p-BVO) array with tetragonal zircon structure coupled with different metal oxide (MOx, M = Sn, Ti, Ni, and Zn) heterostructure and NiNC cocatalyst (p-BVO/MOx/NiNC) was synthesized for the PEC oxygen reduction reaction (ORR) in production of H2O2. The p-BVO/SnO2/NiNC array achieves the production rate 65.46 µmol L-1 h-1 of H2O2 with a Faraday efficiency (FE) of 76.12%. Combined with the H2O2 generation of water oxidation from the n-type Mo-doped BiVO4 (n-Mo:BVO) photoanode, the unbiased photoelectrochemical cell composed of a p-BVO/SnO2/NiNC photocathode and n-Mo:BVO photoanode achieves a total FE of 97.67% for H2O2 generation. The large area BiVO4-based tandem cell of 3 × 3 cm2 can reach a total H2O2 production yield of 338.84 µmol L-1. This work paves the way for the rational design and fabrication of artificial photosynthetic cells for the production of liquid solar fuel.

10.
Angew Chem Int Ed Engl ; 63(19): e202400764, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38501852

RESUMO

Anion exchange membranes (AEMs) are core components in anion exchange membrane water electrolyzers (AEM-WEs). However, the stability of functional quaternary ammonium cations, especially under high temperatures and harsh alkaline conditions, seriously affects their performance and durability. Herein, we synthesized a 1-methyl-3,3-diphenylquinuclidinium molecular building unit. Density functional theory (DFT) calculations and accelerated aging analysis indicated that the quinine ring structure was exceedingly stable, and the SN2 degradation mechanism dominated. Through acid-catalyzed Friedel-Crafts polymerization, a series of branched poly(aryl-quinuclidinium) (PAQ-x) AEMs with controllable molecular weight and adjustable ion exchange capacity (IEC) were prepared. The stable quinine structure in PAQ-x was verified and retained in the ex situ alkaline stability. Furthermore, the branched polymer structure reduces the swelling rate and water uptake to achieve a tradeoff between dimensional stability and ionic conductivity, significantly improving the membrane's overall performance. Importantly, PAQ-5 was used in non-noble metal-based AEM-WE, achieving a high current density of 8 A cm-2 at 2 V and excellent stability over 2446 h in a gradient constant current test. Based on the excellent alkaline stability of this diaryl-quinuclidinium group, it can be further considered as a multifunctional building unit to create multi-topological polymers for energy conversion devices used in alkaline environments.

11.
Chem Commun (Camb) ; 60(24): 3319-3322, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38433668

RESUMO

For photoelectrochemical NADH regeneration, an electrode-supported "lipid bilayer membrane" photocathode based on a p-Si semiconductor, an electron transport mediator (OBV2+), and a [Rh(Cp*)(bpy)Cl]+ catalyst was constructed by self-assembly. Mechanistic study shows that OBV2+ can enhance the charge transfer between the semiconductor and catalyst, leading to a significant improvement of the NADH photo-regeneration rate.

13.
Angew Chem Int Ed Engl ; 63(8): e202317676, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179838

RESUMO

Inhibiting the oxidation of Sn2+ during the crystallization process of Sn-Pb mixed perovskite film is found to be as important as the oxidation resistance of precursor solution to achieve high efficiency, but less investigated. Considering the excellent reduction feature of hydroquinone and the hydrophobicity of tert-butyl group, an antioxidant 2,5-di-tert-butylhydroquinone (DBHQ) was introduced into Sn-Pb mixed perovskite films using an anti-solvent approach to solve this problem. Interestingly, we find that DBHQ can act as function alterable additive during its utilization. On the one hand, DBHQ can restrict the oxidation of Sn2+ during the crystallization process, facilitating the fabrication of high-quality perovskite film; on the other hand, the generated oxidation product 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) can functionalize as defect passivator to inhibit the charge recombination. As a result, this synergetic effect renders the Sn-Pb mixed PSC a power conversion efficiency (PCE) up to 23.0 %, which is significantly higher than the reference device (19.6 %). Furthermore, the unencapsulated DBQH-modified PSCs exhibited excellent long-term stability and thermal stability, with the devices maintaining 84.2 % and 78.9 % of the initial PCEs after aging at 25 °C and 60 °C for 800 h and 120 h under N2 atmosphere, respectively. Therefore, the functional alterable strategy provides a novel cornerstone for high-performance Sn-Pb mixed PSCs.

14.
ACS Appl Mater Interfaces ; 15(51): 59432-59443, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38108306

RESUMO

Acidic oxygen evolution reaction (OER) remains a significant challenge due to the low activity and/or poor stability of the catalysts, even with state-of-the-art catalysts such as IrO2 and RuO2. Herein, we propose a strategy to enhance both the catalytic activity and stability of IrRu oxides for acidic OER by doping non-noble metal W. The W-doped IrRu3Ox (W-IrRu3Ox) undergoes a process of W leaching and reconstruction during the OER, leading to a more uniform distribution of elements, while the electronegative nature of W influences the electronic structures of Ir and Ru in W-IrRu3Ox. The dual role of W in promoting the formation of active site Ir5+ and inhibiting the concentration of soluble Ru>4+ ions results in a synergistic enhancement of both the activity and stability of acidic OER. Remarkably, W-IrRu3Ox exhibits outstanding catalytic activity for the OER in 0.5 M H2SO4, with a high stability of more than 500 h. This work presents a novel and feasible strategy for the development of efficient and stable catalysts for acid OER, shedding light on the design of advanced electrocatalysts for energy conversion and storage applications.

15.
Nat Commun ; 14(1): 5486, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679329

RESUMO

Despite considerable research efforts on photoelectrochemical water splitting over the past decades, practical application faces challenges by the absence of efficient, stable, and scalable photoelectrodes. Herein, we report a metal-halide perovskite-based photoanode for photoelectrochemical water oxidation. With a planar structure using mesoporous carbon as a hole-conducting layer, the precious metal-free FAPbBr3 photovoltaic device achieves 9.2% solar-to-electrical power conversion efficiency and 1.4 V open-circuit voltage. The photovoltaic architecture successfully applies to build a monolithic photoanode with the FAPbBr3 absorber, carbon/graphite conductive protection layers, and NiFe catalyst layers for water oxidation. The photoanode delivers ultralow onset potential below 0 V versus the reversible hydrogen electrode and high applied bias photon-to-current efficiency of 8.5%. Stable operation exceeding 100 h under solar illumination by applying ultraviolet-filter protection. The photothermal investigation verifies the performance boost in perovskite photoanode by photothermal effect. This study is significant in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

16.
Angew Chem Int Ed Engl ; 62(45): e202313133, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37735100

RESUMO

Introducing fluorine (F) groups into a passivator plays an important role in enhancing the defect passivation effect for the perovskite film, which is usually attributed to the direct interaction of F and defect states. However, the interaction between electronegative F and electron-rich passivation groups in the same molecule, which may influence the passivation effect, is ignored. We herein report that such interactions can vary the electron cloud distribution around the passivation groups and thus changing their coordination with defect sites. By comparing two fluorinated molecules, heptafluorobutylamine (HFBM) and heptafluorobutyric acid (HFBA), we find that the F/-NH2 interaction in HFBM is stronger than the F/-COOH one in HFBA, inducing weaker passivation ability of HFBM than HFBA. Accordingly, HFBA-based perovskite solar cells (PSCs) provide an efficiency of 24.70 % with excellent long-term stability. Moreover, the efficiency of a large-area perovskite module (14.0 cm2 ) based on HFBA reaches 21.13 %. Our work offers an insight into understanding an unaware role of the F group in impacting the passivation effect for the perovskite film.

17.
J Am Chem Soc ; 145(37): 20655-20664, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37639564

RESUMO

Developing alternative electrolysis techniques is crucial for advancing electrocatalysis in addition to tremendous efforts of material developments. Recently, pulse electrochemical CO2 reduction reaction (CO2RR) has demonstrated dramatic selectivity improvement toward multicarbon (C2+) products compared to potentiostatic electrochemical CO2RR, yet the underlying mechanisms remain little understood. Herein, we develop a fast time-resolved in situ Raman spectroscopic method with a time resolution of 0.25 s. We reveal that pulse electrolysis improves the C2+ selectivity of CO2RR through dynamic controls of the surface CuxO/Cu composition that would be unachievable under potentiostatic electrolysis. The population of the surface-adsorbed CO intermediate (COads) is characterized to be the determining factor in controlling reaction selectivity, which depicts the C2+/C1 selectivity of CO2RR under pulse conditions. Meanwhile, the vibrational character of COads, despite transforming dynamically between the low-frequency and high-frequency modes is characterized not to be the key factor in controlling the reaction selectivity. Such an active control of catalyst surface compositions and reaction intermediates enabled by pulse electrolysis offer a general way of regulating the electrocatalysis performance of broad electrochemical reactions beyond CO2RR.

18.
Adv Sci (Weinh) ; 10(28): e2303726, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530207

RESUMO

The recognition of the surface reconstruction of the catalysts during electrochemical CO2 reduction (CO2RR) is essential for exploring and comprehending active sites. Although the superior performance of Cu-Zn bimetallic sites toward multicarbon C2+ products has been established, the dynamic surface reconstruction has not been fully understood. Herein, Zn-doped Cu2 O nano-octahedrons are used to investigate the effect of the dynamic stability by the leaching and redeposition on CO2RR. Correlative characterizations confirm the Zn leaching from Zn-doped Cu2 O, which is redeposited at the surface of the catalysts, leading to dynamic stability and abundant Cu-Zn bimetallic sites at the surface. The reconstructed Zn-doped Cu2 O catalysts achieve a high Faradaic efficiency (FE) of C2+ products (77% at -1.1 V versus reversible hydrogen electrode (RHE)). Additionally, similar dynamic stability is also discovered in Al-doped Cu2 O for CO2RR, proving its universality in amphoteric metal-doped catalysts. Mechanism analyses reveal that the OHC-CHO pathway can be the C-C coupling processes on bare Cu2 O and Zn-doped Cu2 O, and the introduction of Zn to Cu can efficiently lower the energy barrier for CO2RR to C2 H4 . This research provides profound insight into unraveling surface dynamic reconstruction of amphoteric metal-containing electrocatalysts and can guide rational design of the high-performance electrocatalysts for CO2RR.

19.
Angew Chem Int Ed Engl ; 62(37): e202309478, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486710

RESUMO

Electricity-driven organo-oxidations have shown an increasing potential recently. However, oxygen evolution reaction (OER) is the primary competitive reaction, especially under high current densities, which leads to low Faradaic efficiency (FE) of the product and catalyst detachment from the electrode. Here, we report a bimetallic Ni-Cu electrocatalyst supported on Ni foam (Ni-Cu/NF) to passivate the OER process while the oxidation of 5-hydroxymethylfurfural (HMF) is significantly enhanced. A current density of 1000 mA cm-2 can be achieved at 1.50 V vs. reversible hydrogen electrode, and both FE and yield keep close to 100 % over a wide range of potentials. Both experimental results and theoretical calculations reveal that Cu doping impedes the OH* deprotonation to O* and hereby OER process is greatly passivated. Those instructive results provide a new approach to realizing highly efficient biomass upgrading by regulating the OER activity.

20.
Adv Mater ; 35(46): e2304379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37487190

RESUMO

Direct electrochemical reduction of CO2 (CO2 RR) into value-added chemicals is a promising solution to reduce carbon emissions. The activity of CO2 RR is influenced deeply by the reaction microenvironment and electronic properties of the catalysts. Herein, the surface PO4 3- anions are tuned to modulate the local microenvironment and the electronic properties of the indium-based catalyst with abundant metal-oxygen species enabling efficient electrochemical conversion of CO2 to HCOO- . Indium nanoparticles coupled with PO4 3- anions (PO4 3- -In NPs) achieve a high selectivity of HCOO- up to 91.4% at a low potential of -0.98 V versus reversible hydrogen electrode (versus RHE) and a high HCOO- partial current density of 279.3 mA cm-2 at -1.1 V versus RHE in the electrochemical flow cell. In situ and ex situ characterizations confirm the PO4 3- anions keep stable on the surface of indium during CO2 RR, accelerating the generation of OCHO* intermediate. From density functional theory calculations, PO4 3- anions enrich the metal-oxygen species on the substrate to optimize the electronic structure of the catalysts and induce a local microenvironment with massive K+ ions on the interface, thus reducing the activation energy barrier of CO2 RR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA