Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Biotechnol Biofuels Bioprod ; 17(1): 107, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039584

RESUMO

BACKGROUND: 2-Phenylethanol (2-PE) is one of the most widely used spices. Recently, 2-PE has also been considered a potential aviation fuel booster. However, the lack of scientific understanding of the 2-PE biosynthetic pathway and the cellular response to 2-PE cytotoxicity are the most important obstacles to the efficient biosynthesis of 2-PE. RESULTS: Here, metabolic engineering and tolerance engineering strategies were used to improve the production of 2-PE in Komagataella phaffii. First, the endogenous genes encoding the amino acid permease GAP1, aminotransferase AAT2, phenylpyruvate decarboxylase KDC2, and aldehyde dehydrogenase ALD4 involved in the Ehrlich pathway and the 2-PE stress response gene NIT1 in K. phaffii were screened and characterized via comparative transcriptome analysis. Subsequently, metabolic engineering was employed to gradually reconstruct the 2-PE biosynthetic pathway, and the engineered strain S43 was obtained, which produced 2.98 g/L 2-PE in shake flask. Furthermore, transcriptional profiling analyses were utilized to screen for novel potential tolerance elements. Our results demonstrated that cells with knockout of the PDR12 and C4R2I5 genes exhibited a significant increase in 2-PE tolerance. To confirm the practical applications of these results, deletion of the PDR12 and C4R2I5 genes in the hyper 2-PE producing strain S43 dramatically increased the production of 2-PE by 18.12%, and the production was 3.54 g/L. CONCLUSION: This is the highest production of 2-PE produced by K. phaffii via L-phenylalanine conversion. These identified K. phaffii endogenous elements are highly conserved in other yeast species, suggesting that manipulation of these homologues might be a useful strategy for improving aromatic alcohol production. These results also enrich the understanding of aromatic compound biosynthetic pathways and 2-PE tolerance, and provide new elements and strategies for the synthesis of aromatic compounds by microbial cell factories.

2.
Front Nutr ; 11: 1373129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807645

RESUMO

Introduction: The aim of this cross-sectional study was to investigate the association between breakfast patterns and executive function among adolescents in Shanghai, China. Methods: In 2022, we randomly recruited 3,012 adolescents aged 12-13 years from all administrative districts in Shanghai. Breakfast information was collected by parents using a one-day recall method. Executive function was measured using the Behavior Rating Inventory of Executive Function-Parent Version. Latent Class Analysis was performed to identify breakfast patterns based on the food groups in the Diet Quality Questionnaire for China. Results: Breakfast patterns were classified into three categories: "Egg and milk foods", "Grain foods", and "Abundant foods", except for adolescents who skipped breakfast. Logistic regression was used to estimate the multivariate odds ratio (ORs) and 95% confidence intervals (95% CI) for the association between breakfast patterns and potential executive dysfunction. Adolescents in the "Abundant foods" class had a lower risk of executive dysfunction in terms of initiate (OR: 0.36; 95% CI: 0.17-0.76), and organization of materials (OR: 0.18; 95% CI: 0.04-0.94), compared to those who skipped breakfast. Similarly, the breakfast patterns of "Grain foods" and "Egg and milk foods" were associated with a lower risk of executive dysfunction, including initiate and working memory. Discussion: Our findings suggest that breakfast patterns were associated with executive function. The improvement of breakfast patterns among adolescents should be a significant public health intervention.

3.
J Hazard Mater ; 470: 134300, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631248

RESUMO

In this study, the cadmium (Cd)-tolerant Ensifer adhaerens strain NER9 with quorum sensing (QS) systems (responsible for N-acyl homoserine lactone (AHL) production) was characterized for QS system-mediated Cd immobilization and the underlying mechanisms involved. Whole-genome sequence analysis revealed that strain NER9 contains the QS SinI/R and TraI/R systems. Strains NER9 and the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants were constructed and compared for QS SinI/R and TraI/R system-mediated Cd immobilization in the solution and the mechanisms involved. After 24 h of incubation, strain NER9 significantly decreased the Cd concentration in the Cd-contaminated solution compared with the NER9∆sinI/R, NER9∆traI/R, and NER9∆sinI/R-traI/R mutants. The NER9∆sinI/R mutant had a greater impact on Cd immobilization and a lower impact on the activities of AHLs than did the NER9∆traI/R mutant. The NER9∆sinI/R mutant had significantly greater Cd concentrations and lower cell wall- and exopolysaccharide (EPS)-adsorbed Cd contents than did strain NER9. Furthermore, the NER9∆sinI/R mutant presented a decrease in the number of functional groups interacting with Cd, compared with strain NER9. These results suggested that the SinI/R system in strain NER9 contributed to Cd immobilization by mediating cell wall- and EPS-adsorption in Cd-containing solution.


Assuntos
Cádmio , Percepção de Quorum , Cádmio/química , Rhizobiaceae/genética , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/química , Mutação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental
4.
Comput Biol Med ; 175: 108505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688129

RESUMO

The latest developments in deep learning have demonstrated the importance of CT medical imaging for the classification of pulmonary nodules. However, challenges remain in fully leveraging the relevant medical annotations of pulmonary nodules and distinguishing between the benign and malignant labels of adjacent nodules. Therefore, this paper proposes the Nodule-CLIP model, which deeply mines the potential relationship between CT images, complex attributes of lung nodules, and benign and malignant attributes of lung nodules through a comparative learning method, and optimizes the model in the image feature extraction network by using its similarities and differences to improve its ability to distinguish similar lung nodules. Firstly, we segment the 3D lung nodule information by U-Net to reduce the interference caused by the background of lung nodules and focus on the lung nodule images. Secondly, the image features, class features, and complex attribute features are aligned by contrastive learning and loss function in Nodule-CLIP to achieve lung nodule image optimization and improve classification ability. A series of testing and ablation experiments were conducted on the public dataset LIDC-IDRI, and the final benign and malignant classification rate was 90.6%, and the recall rate was 92.81%. The experimental results show the advantages of this method in terms of lung nodule classification as well as interpretability.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Aprendizado Profundo , Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Bases de Dados Factuais
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37773415

RESUMO

Bile acids (BA), a series of hydroxylated steroids secreted by the liver, are involved in the digestion and absorption of dietary fats. In the present study, the effect of exogenous BAs on the performance and liver lipid metabolism of laying hens was investigated. Three hundred and sixty 50-wk-old Hy-line Brown hens were randomly allocated into three groups and subjected to one of the following treatments: fed with the basal diet (control, Con), the basal diet supplemented with 0.1 g/kg (0.1 g/kg BAs), or 0.2 g/kg (0.2 g/kg BAs) porcine BAs. Laying performance, egg quality, and blood parameters were measured during the 8-wk experimental period. The expression of genes related to hepatic lipid metabolism was determined at the end of experiment. The results showed that BAs treatments had no influence (P > 0.05) on laying rate, egg weight, and feed efficiency. BAs treatment, however, significantly decreased mortality of hens (P = 0.006). BAs treatment showed a transient negative influence on eggshell quality at week 4 but not at week 8. The yolk color on week 8 was increased by BAs treatments (P < 0.0001) compared to control. The duodenum index showed a tendency to be increased (P = 0.053) and jejunum index were increased (P = 0.007) by BAs treatment. Compared to control, BAs treatments decreased lipid droplet content (P < 0.0001) and TG content (P = 0.002) of liver. Fatty acid synthase activity was also decreased as an effect of BAs dietary supplementation. Compared to the control group, 0.1 g/kg BAs treatment increased (P < 0.05) the mRNA expression of genes Farnesoid X receptor (FXR) (P = 0.042), cytochrome P450 family 7 subfamily A member 1 (CYP7A1) (P = 0.002), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) (P = 0.017), fatty acid synthase (FAS) (P = 0.020), acetyl-CoA carboxylase (ACC) (P = 0.032), sterol regulatory element binding protein-1c (SREBP-1c) (P = 0.037), proliferator-activated receptor gamma (PPARγ) (P = 0.002), apolipoprotein B (APO-B) (P = 0.020), and very low density lipoprotein receptor (VLDLR) (P = 0.024). In conclusion, the addition of exogenous BAs reduces lipid accumulation in liver. BA supplementation reduces the mortality of hens and improves egg yolk color, with no unfavorable effect on laying performance. The result suggests that suppressed FAS activity is involved in the reduced hepatic lipid accumulation by BAs treatment.


Fatty liver hemorrhagic syndrome is one of the most common diseases in laying hens and is a metabolic disease characterized by disorders of lipid metabolism in the liver, manifested by fatty liver degeneration and varying degrees of hemorrhage, which often occurs in caged hens in good condition and with high egg production rates. Bile acids (BA), a group of hydroxylated steroids synthesized from cholesterol in the liver, play an important role in lipid metabolism. This study aimed to examine the effects of dietary addition of different levels of BAs on the production performance and liver fat metabolism of 50-wk-old Hy-line Brown hens. The result indicates that the addition of exogenous BAs reduces lipid accumulation in liver. BAs supplementation reduces the mortality of hens and improves egg yolk color, with no other unfavorable side effects on laying performance. The results of the present study suggest that suppressed fatty acid synthase activity is involved in the reduced hepatic lipid accumulation as an effect of BAs dietary supplementation.


Assuntos
Ácidos e Sais Biliares , Metabolismo dos Lipídeos , Animais , Feminino , Suínos , Ácidos e Sais Biliares/metabolismo , Galinhas/metabolismo , Óvulo/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Fígado/metabolismo , Gorduras na Dieta/farmacologia , Ácido Graxo Sintases , Ração Animal/análise
6.
PLoS One ; 18(5): e0285261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37130127

RESUMO

Adolescence is a susceptible period to establish health-risk behaviors, which may have an impact on academic performance. The aim of this study was to investigate the association between health-risk behaviors (HRBs) and perceived academic performance (PAP) of adolescents in Shanghai, China. The data of the present study included three-round Shanghai Youth Health-risk Behavior Survey (SYHBS). This cross-sectional survey investigated multiple HRBs of students involved in dietary behaviors, physical activity and sedentary behaviors, intentional and unintentional injury behaviors, and substance abuse behaviors, as well as PAP by using self-reported questionnaire. Using a multistage random sampling method, 40,593 middle and high school students aged 12 to 18 years were involved. Only participants with complete data on HRBs information, academic performance and covariates were included. A total of 35,740 participants were involved in analysis. We used ordinal logistic regression to analyze the association between each HRB and PAP adjusting for sociodemographic, family environment and duration of extracurricular study. The results showed that students who did not eat breakfast or drink milk everyday were more likely to have a lower PAP, with a decreased odds of 0.89 (95%CI: 0.86-0.93, P<0.001) and 0.82 (95%CI: 0.79-0.85, P<0.001), respectively. The similar association was also found in students who did exercise ≥60 minutes for less than 5 days/week, spend time on watch TV beyond 3 hours/day and other sedentary behaviors. Most intentional and unintentional injuries, and ever smoked were associated with a lower PAP. Our finding suggests that multiple HRBs negatively associated with PAP of adolescents. It needs to raise public health concerns with HRBs in adolescents, and to develop and implement comprehensive interventions on HRBs.


Assuntos
Lesões Acidentais , Comportamento do Adolescente , Adolescente , Humanos , Estudos Transversais , China , Comportamentos de Risco à Saúde , Estudantes , Assunção de Riscos
7.
Biotechnol Biofuels Bioprod ; 16(1): 72, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118827

RESUMO

BACKGROUND: In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS: In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS: Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.

8.
J Anim Sci Biotechnol ; 14(1): 9, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36721201

RESUMO

BACKGROUND: This study examined the efficacy of L-citrulline supplementation on the arginine/nitric oxide metabolism, and intestinal functions of broilers during arginine deficiency. A total of 288 day-old Arbor Acre broilers were randomly assigned to either an arginine deficient basal diet (NC diet), NC diet + 0.50% L-arginine (PC diet), or NC diet + 0.50% L-citrulline (NCL diet). Production performance was recorded, and at 21 days old, chickens were euthanized for tissue collection. RESULTS: The dietary treatments did not affect the growth performance of broilers (P > 0.05), although NC diet increased the plasma alanine aminotransferase, urate, and several amino acids, except arginine (P < 0.05). In contrast, NCL diet elevated the arginine and ornithine concentration higher than NC diet, and it increased the plasma citrulline greater than the PC diet (P < 0.05). The nitric oxide concentration in the kidney and liver tissues, along with the plasma and liver eNOS activities were promoted by NCL diet higher than PC diet (P < 0.05). In the liver, the activities of arginase 1, ASS, and ASL, as well as, the gene expression of iNOS and OTC were induced by PC diet greater than NC diet (P < 0.05). In the kidney, the arginase 1, ASS and ASL enzymes were also increased by PC diet significantly higher than the NC and NCL diets. Comparatively, the kidney had higher abundance of nNOS, ASS, ARG2, and OTC genes than the liver tissue (P < 0.05). In addition, NCL diet upregulated (P < 0.05) the mRNA expression of intestinal nutrient transporters (EAAT3 and PEPT1), tight junction proteins (Claudin 1 and Occludin), and intestinal mucosal defense (MUC2 and pIgR). The intestinal morphology revealed that both PC and NCL diets improved (P < 0.05) the ileal VH/CD ratio and the jejunal VH and VH/CD ratio compared to the NC fed broilers. CONCLUSION: This study revealed that NCL diet supported arginine metabolism, nitric oxide synthesis, and promoted the intestinal function of broilers. Thus, L-citrulline may serve as a partial arginine replacement in broiler's diet without detrimental impacts on the performance, arginine metabolism and gut health of chickens.

9.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673453

RESUMO

The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.

10.
Front Plant Sci ; 13: 1006409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110359

RESUMO

Cytokinin is an important endogenous hormone in plants performing a wide spectrum of biological roles. The type-A response regulators (RRAs) are primary cytokinin response genes, which are important components of the cytokinin signaling pathway and are involved in the regulation of plant growth and development. By analysis of the whole genome sequence of wheat, we identified 20 genes encoding RRAs which were clustered into eight homologous groups. The gene structure, conserved motifs, chromosomal location, and cis-acting regulatory elements of the TaRRAs were analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) results showed that the expression levels of most of the TaRRAs increased rapidly on exogenous cytokinin application. Moreover, the TaRRA family members displayed different expression profiles under the stress treatments of drought, salt, cold, and heat. This study provides valuable insights into the RRA gene family in wheat and promotes the potential application of these genes in wheat genetic improvement.

11.
Mol Plant ; 15(9): 1440-1456, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35864747

RESUMO

Studying the regulatory mechanisms that drive nitrogen-use efficiency (NUE) in crops is important for sustainable agriculture and environmental protection. In this study, we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism. By comparative analyses, we found that the high-affinity nitrate transporter gene family had expanded in Triticeae. Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility, providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats. To explore the genetic and molecular mechanisms of high NUE, we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204 (KN9204) and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high- and low-nitrogen conditions. Compared with Jing 411, KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds. Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411, whereas this suppression of gene expression was much lower in KN9204. In addition, KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity. Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411, especially at the reproductive stage. The high NUE of KN9204 is an integrated effect controlled at different levels. Taken together, our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.


Assuntos
Nitrogênio , Triticum , Perfilação da Expressão Gênica , Genômica , Nitrogênio/metabolismo , Transcriptoma/genética , Triticum/genética , Triticum/metabolismo
12.
Exp Biol Med (Maywood) ; 247(16): 1466-1478, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35757995

RESUMO

Chronic kidney disease (CKD) is a high mortality disease and generally remains asymptomatic in the early stages. Long non-coding RNA (lncRNA) is defined as a non-protein-coding transcript more than 200 nucleotides which participate in numerous biological processes and have been identified as novel diagnostic markers for many diseases. Detection of circulating lncRNAs is a rapidly evolving, new area of molecular diagnosis. The purpose of our research was to identify circulating lncRNA expression profiles and possible molecular mechanisms involved in CKD. Blood samples were obtained from patients with CKD and healthy volunteers, and high-throughput sequencing was performed to identify differentially expressed (DE) lncRNAs and mRNAs. DE lncRNAs and mRNAs in peripheral blood mononuclear cells (PBMCs) were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) to ensure the reliability and validity of RNA-seq data. Bioinformatics analysis was used to obtain biological functions and key pathways related to the pathogenesis of CKD. The interaction and co-expression functional networks for DE lncRNAs and mRNAs were also constructed. Our data showed that of the 425 DE lncRNAs detected, 196 lncRNAs were upregulated, while that of 229 lncRNAs were downregulated. A total of 433 DE mRNAs were identified in patients with CKD compared to healthy individuals. GO analysis revealed that DE lncRNAs were highly correlated with binding and pathway regulation. KEGG analysis suggested that DE lncRNAs were obviously enriched in regulatory pathways, such as antigen processing and presentation. We successfully constructed a potential DE lncRNA-mRNA co-expression network and analyzed the target genes of DE lncRNAs to predict cis- and trans-regulation in CKD. 100 lncRNAs that corresponded to 14 transcription factors (TFs) were identified in the TF-lncRNA binary network. Our findings on the lncRNA expression profiles and functional networks may help to interpret the possible molecular mechanisms implied in the pathogenesis of CKD; the results demonstrated that lncRNAs could potentially to be used as diagnostic biomarkers in CKD.


Assuntos
RNA Longo não Codificante , Insuficiência Renal Crônica , Biomarcadores/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Leucócitos Mononucleares/metabolismo , Nucleotídeos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
13.
Int J Pharm ; 619: 121716, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35367586

RESUMO

In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.


Assuntos
Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Verde de Indocianina , Neoplasias Hepáticas/tratamento farmacológico , Fototerapia
14.
Pak J Pharm Sci ; 35(1(Special)): 369-373, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35236650

RESUMO

To investigate the effects of levothyroxine combined with methimazole on the clinical efficacy of hyperthyroidism treatment. A total of 102 patients with hyperthyroidism admitted to our hospital from January 2018 to June 2020 were selected and randomly assigned into the combination group (levothyroxine combined with methimazole) and the control group (methimazole treatment alone). 3 months after treatment, the two groups were compared with regard to clinical efficacy, changes in ultrasound findings, the thyroid hormones, and serum indexes and the adverse reactions rate. The combination group (98.04%) outperformed the control group (86.27%) in total effective rate, and the overall efficacy garnered the similar result. After treatment, the combination group showed advantages in thyroid hormone level, serum index level, thyroid volume, superior thyroid artery diameter, and maximum blood flow rate when compared with those of the control group (P<0.05). As for the adverse reactions rate, the combination group was superior to the control group (3.92%vs15.69%) (P<0.05). Levothyroxine combined with methimazole promotes the clinical efficacy of hyperthyroidism treating, reduces thyroid volume and the diameter of superior thyroid artery, enhances the patient's thyroid function and serum index, with higher safety profile.


Assuntos
Hipertireoidismo/tratamento farmacológico , Metimazol/uso terapêutico , Tiroxina/uso terapêutico , Adulto , Idoso , Antitireóideos/administração & dosagem , Antitireóideos/uso terapêutico , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tiroxina/administração & dosagem , Adulto Jovem
15.
Pediatr Obes ; 17(5): e12874, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34937132

RESUMO

BACKGROUND: Since December 2019, the coronavirus disease 2019 (COVID-19) has become a global pandemic. Currently, the COVID-19 pandemic is still ongoing. What changes have taken place in the obesity and obesity-related lifestyle behaviours of adolescents during the first year of the COVID-19 pandemic? OBJECTIVE: This study aims at analysing the changes in obesity and lifestyle behaviours of Chinese adolescents before and 1 year after the outbreak of the COVID-19 pandemic, providing evidence for the global strategies to respond to the impact of the COVID-19 pandemic on adolescent obesity. METHODS: Physical examinations and student health and influencing factors questionnaires were conducted among 6047 adolescents aged 11-16 years by health professionals in Shanghai, China, before the COVID-19 pandemic (September-November of 2019) and 1 year after the outbreak of the COVID-19 pandemic (September-November of 2020). Paired χ2 tests, paired t-tests or Wilcoxon signed-rank test was used to evaluate the changes in the obesity prevalence, BMI and lifestyle behaviours from 2019 to 2020. RESULTS: 1 year after the outbreak of the COVID-19 pandemic, the obesity prevalence of Chinese adolescents rose from 14.2% to 15.4% (p < 0.01), mainly because of the increase in boys. And the average BMI increased from 20.3 to 21.2 kg/m2 (p < 0.01). Their lifestyle behaviours have also significantly changed. The mobile screen time increased from 0.25-1.50 h/day to 0.33-2.00 h/day (p < 0.01). The proportion of adolescents who participated in MVPA for ≥60 min/day on all 7 days during the past week dropped from 14.4% to 11.7% (p < 0.01). The generalized estimation equation analysis indicated that adolescents who participated in MVPA for ≥60 min/day on all 7 days had a lower likelihood of having obesity. Boys with computer time ≥2 h/day and girls with mobile screen time ≥2 h/day or TV time ≥2 h/day had a higher likelihood of having obesity. CONCLUSION: This study found that 1 year after the outbreak of the COVID-19 pandemic, the BMI and obesity prevalence of Chinese adolescents increased and obesity-related lifestyle behaviours have also changed.


Assuntos
COVID-19 , Obesidade Infantil , Adolescente , COVID-19/epidemiologia , COVID-19/prevenção & controle , China/epidemiologia , Feminino , Humanos , Estilo de Vida , Masculino , Pandemias/prevenção & controle , Obesidade Infantil/epidemiologia , Obesidade Infantil/prevenção & controle
16.
Front Psychol ; 13: 1095365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687877

RESUMO

Background: Women undergoing in vitro fertilization-embryo transfer (IVF-ET) treatment were generally found to experience varying degrees of psychological distress across the treatment. Existing studies focused on total scores and diagnostic thresholds to characterize the symptoms' severity, which might hinder scientific progress in understanding and treating psychological distress. Aims: We aimed to investigate (a) how depression and anxiety symptoms are interconnected within a network, and (b) the changes of the network (symptom connections and network centralities) over time, in women undergoing in vitro fertilization-embryo transfer. Methods: A 4-wave longitudinal study was designed with 343 eligible women recruited from the Reproductive Medicine Center of a tertiary hospital in China. The network models were created to explore the relationship and changes between psychopathology symptoms both within and across anxiety and depression, with anxiety measured by the Generalized Anxiety Disorder-7 and depression measured by the Patient Health Questionnaire-9. Symptom network analysis was conducted to evaluate network and network properties, network centrality, and bridge centrality, as well as change trajectory network. Results: For the strength centrality, "inability to control worry" and "worrying too much" were the most central symptoms at T1; however, these symptoms decreased. The centrality of "sadness" and "guilt" tended to increase steadily and became dominant symptoms. For bridge centrality indices, several bridge symptoms were identified separately from T1 to T4: "irritability," "concentration difficulties," "nervousness," and "restlessness;" "guilt" exhibited increased bridge symptoms. Furthermore, the change trajectory network indicated that "suicide ideation" became more closely related to guilt but not to worrying too much over time. Conclusion: This study provides novel insights into the changes in central features, connections, and bridge symptoms during IVF-ET treatment and identified several bridge symptoms separately at different stages, which could activate the connection between psychopathology symptoms. The results revealed that sense of guilt was associated with worsening psychopathology symptoms, indicating that future psychological interventions should target guilt-related symptoms as a priority.

17.
Front Plant Sci ; 13: 1098560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684753

RESUMO

The primary goal of modern wheat breeding is to develop new high-yielding and widely adaptable varieties. We analyzed four yield-related agronomic traits in 502 wheat accessions under normal conditions (NC) and drought treatment (DT) conditions over three years. The genome-wide association analysis identified 51 yield-related and nine drought-resistance-related QTL, including 13 for the thousand-grain weight (TGW), 30 for grain length (GL), three for grain width (GW), five for spike length (SL) and nine for stress tolerance index (STI) QTL in wheat. These QTL, containing 72 single nucleotide polymorphisms (SNPs), explained 2.23 - 7.35% of the phenotypic variation across multiple environments. Eight stable SNPs on chromosomes 2A, 2D, 3B, 4A, 5B, 5D, and 7D were associated with phenotypic stability under NC and DT conditions. Two of these stable SNPs had association with TGW and STI. Several novel QTL for TGW, GL and SL were identified on different chromosomes. Three linked SNPs were transformed into kompetitive allele-specific PCR (KASP) markers. These results will facilitate the discovery of promising SNPs for yield-related traits and/or drought stress tolerance and will accelerate the development of new wheat varieties with desirable alleles.

18.
Int Immunopharmacol ; 99: 107926, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34233231

RESUMO

Emerging evidence suggests that inflammation plays a pivotal role in Atherosclerosis. Sirtuin 6 (SIRT6), a member of NAD+-dependent protein lysine deacylases of the sirtuin family, plays an important role in the regulation of metabolism, aging and stress resistance. However, the role of SIRT6 in vascular inflammation and its molecular mechanism is unknown. The present study showed that TNF-α significantly reduced the expression of SIRT6 protein and mRNA in a concentration- and time-dependent manner and increased the expression of monocyte chemotactic protein 1 (MCP-1), interleukin (IL) -6 and IL-1ß in human umbilical vein endothelial cells (HUVECs). Overexpression of SIRT6 but not its catalytically inactive mutant inhibited TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. Knockdown of SIRT6 significantly enhanced TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. Moreover, knockdown of SIRT6 reduced TNF-α-induced nuclear factor erythroid 2 related factor 2 (NRF2) nucleus protein expression, whereas knockdown of NRF2 significantly enhanced TNF-α-induced expression of MCP-1, IL-6 and IL-1ß. In addition, overexpression of SIRT6 increased NRF2 and its target genes expression, and knockdown of SIRT6 decreased NRF2 and its target genes expression. Meanwhile, knockdown of SIRT6 inhibited NRF2 nucleus protein expression. Further, knockdown of SIRT6 decreased phosphorylation of NRF2, overexpression of SIRT6 increased phosphorylation of NRF2. SIRT6 interacted with NRF2. In vivo, the levels of TNF-α and IL-1ß were increased in the serum of hyperlipidemia mice. Hyperlipidemia-induced production of MCP-1, IL-6 and IL-1ß was significantly augmented in the endothelium specific SIRT6 knockout mice. In contrast, the expression of NRF2 and its target genes was reduced. Taken together, these results indicate that SIRT6 protects against vascular inflammation via its deacetylase activity and the NRF2-dependent signaling pathway.


Assuntos
Anti-Inflamatórios/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuínas/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Quimiocina CCL2/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Sirtuínas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
19.
Chemosphere ; 275: 130109, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677267

RESUMO

In this study, an cadmium (Cd)-immobilizing and arginine decarboxylase-producing endophytic Sphingomonas sp. strain C40 obtained from the seeds of Oryza sativa Cliangyou 513 was characterized for its Cd availability and Cd uptake in host rice using hydroponic and soil experiments. The Cd concentration decreased by 51-95% compared to the control, while the spermidine concentration increased by 19-25% with Cd compared with no Cd in the strain C40-inoculated solution. Strain C40 decreased the above-ground tissue Cd content by 27-37% and increased spermine and spermidine contents by 28-67% and the expression levels of genes involved in spermine and spermidine production by 29-217% in rice roots compared to the controls. Furthermore, correlation analyses showed the significantly negative correlation between rice root spermine and spermidine contents and above-ground tissue Cd content. In the Cd-added soil, strain C40 promoted the rice biomass by 29-36% and decreased rice root, above-ground tissue, and grain Cd contents by 18, 16, and 33% and total grain Cd uptake by 14% compared with the controls at the maturity stage. Strain C40 decreased the exchangeable Cd content by 27% and increased the Fe and Mn oxides-bound Cd content by 45% in the rice rhizosphere soils at the maturity stage compared with the controls. These results suggested that the endophytic bacterial strain C40 increased rice root polyamine production and their related gene expression and the transformation of available Cd to unavailable Cd, leading to reduced Cd accumulation and translocation from the rice roots to grains.


Assuntos
Oryza , Poluentes do Solo , Sphingomonas , Cádmio/análise , Carboxiliases , Oryza/genética , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Sphingomonas/genética
20.
Sci Rep ; 11(1): 3510, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568721

RESUMO

Starch is the main component of wheat (Triticum aestivum L.) grain and a key factor in determining wheat processing quality. The Wx gene is the gene responsible for amylose synthesis. An ethyl methanesulfonate (EMS) mutagenized population was generated using common wheat cv. Gao 8901, a popular and high-quality cultivar in China. A waxy mutant (Wx-null) was isolated by screening M3 seeds with KI-I2 staining of endosperm starch. No obvious waxy proteins in Wx-null line were detected using Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). DNA sequencing revealed three SNPs and a 3-bp InDel in the first exon, and a 16-bp InDel at the junction region of the first Wx-A1 intron from the Wx-null line. Six SNPs were identified in Wx-B1 gene of Wx-null line compared to the wild-type Gao 8901, including four missense mutations. One nonsense mutation was found at position 857 in the fourth exon, which resulted in a premature stop codon. Expression levels of Wx genes were dramatically reduced in the Wx-null line. There were no detectable differences in granule size and morphology between Wx-null and wild-type, but the Wx-null line contained more B-type starch granules. The amylose content of the Wx-null line (0.22%) was remarkably lower compared to the wild-type Gao 8901 (24.71%). Total starch is also lower in the Wx-null line. The Wx-null line may provide a potential waxy material with high agronomic performance in wheat breeding programs.


Assuntos
Mutação/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Triticum/genética , Alelos , Amilose/metabolismo , Grão Comestível/genética , Genes de Plantas/genética , Íntrons/genética , Melhoramento Vegetal/métodos , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA