Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 15(1): 35, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379342

RESUMO

Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.

2.
Molecules ; 25(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429191

RESUMO

As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.


Assuntos
Celulose/química , Nanofibras/química , Poliésteres/química , Polietilenoglicóis/química , Impressão Tridimensional , Celulase/química , Humanos , Hidrólise , Nanofibras/ultraestrutura , Pressão , Resistência à Tração
3.
Carbohydr Polym ; 207: 297-316, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600012

RESUMO

3D printing enables the complex or customized structures production in high speed and resolution. However, the lack of bio-based materials with user-defined biochemical and mechanical property is a significant barrier that limits the widespread adoption of 3D printing for products fabrication. Development of eco-friendly natural-derived biopolymers for 3D printing technologies and their promising application in different areas are of huge academic, and environmental interests. This paper reviews the state-of-the-art in terms of 3D printing technology using natural-derived feedstocks, including lignocellulose, starch, algae, and chitosan-based biopolymers. Special consideration is given to the development of lignocellulosic materials, i.e. cellulose, hemicellulose, lignin, and their derivatives as 3D printing feedstocks. A strategical development roadmap with identified material property requirements, key challenges, as well as possible solutions was proposed. It serves as guideline aiming to explore natural-derived biopolymers as novel feedstocks for different 3D printing technologies that will be potentially applied in various areas.


Assuntos
Biopolímeros/química , Polissacarídeos/química , Impressão Tridimensional/instrumentação , Animais , Condrócitos , Humanos , Lignina/química , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA