Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
World J Clin Cases ; 9(13): 3200-3211, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33969109

RESUMO

BACKGROUND: Alström syndrome (AS, OMIM ID 203800) is a rare disease involving multiple organs in children and is mostly reported in non-Chinese patients. In the Chinese population, there are few reports on the clinical manifestations and pathogenesis of AS. This is the first report on the association between AS and Graves' hyperthyroidism. CASE SUMMARY: An 8-year-old Chinese girl was diagnosed with AS. Two years later, Graves' hyperthyroidism developed with progressive liver dysfunction. The patient's clinical data were collected; DNA from peripheral blood of the proband, parents and sibling was collected for gene mutation detection using the second-generation sequencing method and gene panel for diabetes. The association between the patient's genotype and clinical phenotype was analyzed. She carried the pathogenic compound heterozygous mutation of ALMS1 (c.2296_2299del4 and c.11460C>A). These stop-gain mutations likely caused truncation of the ALMS1 protein. CONCLUSION: The manifestation of hyperthyroidism may suggest rapid progression of AS.

2.
Front Pharmacol ; 9: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636681

RESUMO

Aim: Docosahexaenoic acid (DHA) is known to activate the vascular large-conductance calcium-activated potassium (BK) channels and has protective effects on the cardiovascular system. However, the underlying mechanisms through which DHA activates BK channels remain unclear. In this study, we determined such mechanisms by examining the effects of different concentrations of DHA on BK channels in freshly isolated rat coronary arterial smooth muscle cells (CASMCs) using patch clamp techniques. Methods and Results: We found that BK channels are the major potassium currents activated by DHA in rat CASMCs and the effects of DHA on BK channels are concentration dependent with a bimodal distribution. At concentrations of <1 µM, DHA activated whole-cell BK currents with an EC50 of 0.24 ± 0.05 µM and the activation effects were abolished by pre-incubation with SKF525A (10 µM), a cytochrome P450 (CYP) epoxygenase inhibitor, suggesting the role of DHA-epoxide. High concentrations of DHA (1-10 µM) activated whole-cell BK currents with an EC50 of 2.38 ± 0.22 µM and the activation effects were unaltered by pre-incubation with SKF525A. Single channel studies showed that the open probabilities of BK channels were unchanged in the presence of low concentrations of DHA, while significantly increased with high concentrations of DHA. In addition, DHA induced a dose-dependent increase in cytosolic calcium concentrations with an EC50 of 0.037 ± 0.01 µM via phospholipase C (PLC)-inositol triphosphate (IP3)-Ca2+ signal pathway, and inhibition of this pathway reduced DHA-induced BK activation. Conclusion: These results suggest that DHA can activate BK channels by multiple mechanisms. Low concentration DHA-induced BK channel activation is mediated through CYP epoxygenase metabolites, while high concentration DHA can directly activate BK channels. In addition, DHA at low and high concentrations can both activate BK channels by elevated cytosolic calcium through the PLC-IP3-Ca2+ signal pathway.

3.
J Vasc Res ; 54(6): 329-343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29040972

RESUMO

AIM: The objective of this study was to examine the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs) on coronary arterial large conductance Ca2+-activated K+ (BK) channel function in coronary smooth muscle cells (SMCs) of streptozotocin-induced diabetic rats. METHODS: The effects of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on coronary BK channel open probabilities were determined using the patch clamp technique. The mRNA and protein expressions of BK channel subunits were measured using qRT-PCR and Western blots. The coronary artery tension and coronary SMC Ca2+ concentrations were measured using a myograph system and fluorescence Ca2+ indicator. RESULTS: Compared to nondiabetic control rats, the BK channel function was impaired with a reduced response to EPA and DHA in freshly isolated SMCs of diabetic rats. Oral administration of n-3 PUFAs had no effects on protein expressions of BK channel subunits in nondiabetic rats, but significantly enhanced those of BK-ß1 in diabetic rats without altering BK-α protein levels. Moreover, coronary ring tension induced by iberiotoxin (a specific BK channel blocker) was increased and cytosolic Ca2+ concentrations in coronary SMCs were decreased in diabetic rats, but no changes were found in nondiabetic rats. CONCLUSIONS: n-3 PUFAs protect the coronary BK channel function and coronary vasoreactivity in diabetic rats as a result of not only increasing BK-ß1 protein expressions, but also decreasing coronary artery tension and coronary smooth muscle cytosolic Ca2+ concentrations.


Assuntos
Doença da Artéria Coronariana/prevenção & controle , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Angiopatias Diabéticas/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA